
 

 

 
  

NO 428 

Cooperation in Multiplayer Dilemmas 
 
Ismael Martinez-Martinez 
Hans-Theo Normann 
 
 
 September 2025 



 

IMP RIN T  
 
DICE DISCUSSION PAPER 
 
Published by: 
Heinrich-Heine-University Düsseldorf,  
Düsseldorf Institute for Competition Economics (DICE),  
Universitätsstraße 1, 40225 Düsseldorf, Germany 
www.dice.hhu.de 
 
Editor: 
Prof. Dr. Hans-Theo Normann 
Düsseldorf Institute for Competition Economics (DICE) 
Tel +49 (0) 211-81-15125, E-Mail normann@dice.hhu.de 
 
All rights reserved. Düsseldorf, Germany 2025. 
 
ISSN 2190-9938 (online) / ISBN 978-3-86304-427-5 
 
The working papers published in the series constitute work in 
progress circulated to stimulate discussion and critical comments. 
Views expressed represent exclusively the authors’ own opinions 
and do not necessarily reflect those of the editor. 



Cooperation in Multiplayer Dilemmas*

Ismael Mart́ınez-Mart́ınez�and Hans-Theo Normann�

September 2025

Abstract

We analyze infinitely repeated multiplayer prisoner’s dilemmas in conti-
nuous-time experiments. As the number of players changes, our design
keeps the payoffs of the all-defection, all-cooperation, and unilateral-
defection and -cooperation outcomes constant, thus controlling for the
minimum discount factor required for cooperation to be an equilibrium.
For all group sizes, we study three different variants of the prisoner’s
dilemma. In further treatments, we allow actions to be chosen from a
continuous set. We find that cooperation rates decrease with the num-
ber of players, a result that we can attribute to the increased strategic
uncertainty in larger groups. The different payoff matrices also affect
cooperation. For the payoff matrices with lower levels of cooperation,
the group-size effect is weaker. The availability of a continuous action
set strongly reduces cooperation rates.
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1 Introduction

Seventy-five years after its introduction, there is a striking surge of research on

the prisoner’s dilemma. One part of this current stream of research looks at the

determinants of cooperation in the infinitely repeated game where meta data from

supergames yield new insights (Dal Bó and Fréchette, 2018),1 and a key factor

can be related to concepts of strategic uncertainty (Blonski et al., 2011; Blonski and

Spagnolo, 2015; Dal Bó and Fréchette, 2011). In terms of experimental methodology,

the continuous-time experiments are an important leap forward, allowing immediate

and asynchronous action adjustments (Friedman and Oprea, 2012; Oprea et al.,

2014; Bigoni et al., 2015). These and other2 lines of new research suggest that the

prisoner’s dilemma continues to inspire exciting and innovative research.

Our paper extends these approaches and new methodological advances to mul-

tiplayer prisoner’s dilemmas. Whereas the above research exclusively uses the stan-

dard two-player environment, we study the prisoner’s dilemma in groups of different

sizes, with up to nine players. Group sizes larger than two are rather frequent and

relevant when it comes to issues such as team collaboration, joint effort to provide

collective goods, or common pool extraction. So it seems important to go beyond

the classic two-player setup. While a number of experiments have examined the

effects of group size on cooperation, most of these study finitely repeated games,

and many of them are oligopoly studies. An exception is the closely related study

by Boczoń et al. (2024), which was conducted independently of of our paper. See

our literature survey in Section 2.

A key feature of our experiment and our main contribution is that we control for

the minimum discount factor required for cooperation to be an equilibrium in the

infinitely repeated game: For any number of players, we keep constant the payoffs

in the all-defect, all-cooperate, unilateral-defection, and unilateral-cooperation out-

comes. This implies that the repeated-game incentive constraint, as reflected in the

1See Embrey et al. (2018) and Mengel (2018) for meta-studies of finitely repeated prisoners’
dilemmas and one-shot games (Mengel, 2018).

2 Several papers address the question of the strategies players adopt in repeated prisoner’s
dilemmas (Dal Bó and Fréchette, 2011; Fudenberg et al., 2012; Friedman and Oprea, 2012; Bigoni
et al., 2015; Dal Bó and Fréchette, 2019). Furthermore, there are novel analyses of memory-one
(or Markov) strategies; Belief-free equilibria (Ely and Välimäki, 2002; Ely et al., 2005; Breitmoser,
2015) and zero-determinant strategies (Press and Dyson, 2012; Hilbe et al., 2014, 2015).
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minimum discount factor, for cooperation is identical for all group sizes.3 Because

of this design feature, we can make a clean comparison of the cooperation rates

across different group sizes. This important difference distinguishes our study from

previous N -player studies.4

Whereas the repeated-game constraint in our experiments is the same for all

group sizes, we expect the number of players to have an effect due to strategic

uncertainty. Blonski et al. (2011), Blonski and Spagnolo (2015), and Dal Bó and

Fréchette (2011) propose this concept for two-player infinitely repeated dilemma

games. Our theory part extends the concepts of strategic uncertainty to more than

two players. The traditional repeated-game approach as reflected in the incentive

constraint compares the gain from a unilateral defection vs. the loss from a punish-

ment path in a given equilibrium. Strategic uncertainty, by contrast, captures the

uncertainty (or riskiness) when choosing a cooperative or defective repeated-game

strategy. Put differently, strategic uncertainty is about equilibrium selection. Our

design can disentangle the two possible mechanisms by which an increase in the num-

ber of players may affect cooperation: One, by making cooperative outcomes more

difficult to be supported in equilibrium, and, two, by making cooperative equilibria

less likely to be selected. As we control for the first mechanism, increased riskiness

remains as an explanation for group-size effects. We show how strategic uncertainty

changes theoretically in the number of players and we compare these predictions

with experimental data.

Our research also contributes to the discussion about the determinants of coop-

eration. In their meta study, Dal Bó and Fréchette (2018) show how payoffs (gain

from unilateral defection, loss from unilateral cooperation) affect cooperation. We

study three different prisoner’s dilemma payoff matrices to show how payoff differ-

ences affect cooperation in multiplayer games, that is, how they interact with the

number of players.

3 It may seem that larger groups “naturally” require a higher minimum discount factor for
cooperation, suggesting that our goal of controlling for this is somewhat artificial. However, a
larger number of players does not always imply a higher minimum discount factor. Fonseca and
Normann (2008) and Kühn (2012) present standard oligopoly models where larger groups require a
lower minimum discount factor. Thus, the theory does not suggest a general relationship between
group size and the minimum discount factor.

4 This is also true in linear public good games that adjust the marginal per capita rate of
contributions for N : Since the payoff from unilateral defection increases in N , the minimum
discount factor is larger for larger groups.
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The paper’s third contribution is its study of the effect of continuous time (Fried-

man and Oprea, 2012; Bigoni et al., 2015) on larger groups. While a couple of papers

with continuous-time experiments depart from the two-player setup (Oprea et al.,

2014; Benndorf et al., 2021), these experiments are difficult to compare because the

action spaces and incentives differ. Our research connects these isolated islands by

analyzing a comprehensive set of group sizes for comparable prisoner’s dilemmas, in

continuous time.

In addition to the classic “cooperate or defect” pure-strategy setup of the pris-

oner’s dilemma, we study an experimental treatment in which participants have

access to a continuous action set. One motivation for these experiments is that in

larger groups, subjects face intermediate levels of cooperation, which can complicate

the comparison of two- and multiplayer experiments. Beyond simply changing the

action space, the continuous action set variants may have some merit per se. There

is considerable research interest in notions of gradualism (Kartal et al., 2021, for ex-

ample, for the trust game): players can gradually increase the level of cooperation,

thereby reducing the potential loss from unilateral cooperation.

To summarize, our experiments study groups with two, three, four, six, and nine

players, and we keep constant the minimum discount factor required for cooperation.

Subjects play 21 supergames with three different multiplayer prisoner’s dilemma

payoff matrices in continuous time and with a stochastic horizon. In addition to a

standard two-action version, we analyze games with a continuous action set.

Our results are as follows. First, cooperation rates decrease with the number of

players, conditional on having cooperation being equally difficult to be supported in

equilibrium for all group sizes, and consistent with strategic uncertainty. Second, our

variations of the payoff matrices, which make cooperative outcomes more difficult

to be supported in equilibrium, also play a role. For these payoff matrices, the

effect of larger groups is reduced. Third, allowing a continuous action set strongly

reduces cooperation rates, suggesting that the availability of intermediate levels of

cooperation leads to an escalation of conflict rather than gradual cooperation.

Section 2 is the literature review. Section 3 introduces our experimental design

and the theory. Section 4 presents our results. Section 5 discusses the results, and

Section 6 concludes.
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2 Literature

A number of laboratory experiments analyze the effect of the player numbers. For

oligopoly, early contributions are the Cournot and Bertrand experiments of Fouraker

and Siegel (1963) and Dolbear et al. (1968) comparing two vs. three and two vs. four

players, respectively.5 A first comprehensive set of group sizes (two to five player

Cournot games) is analyzed in Huck et al. (2004). Potters and Suetens (2013) survey

the oligopoly literature, and further oligopoly data and metadata on group sizes

can be found in Engel (2015) and Horstmann et al. (2018). Numbers effects have

also been investigated in repeated public goods experiments, again mostly finitely

repeated. Isaac et al. (1994) have groups of four, ten, 40 and 100, and Weimann et al.

(2019) have voluntary contribution mechanisms (VCMs) with groups of size eight,

60 and 100. Diederich et al. (2016) conduct a VCM experiment with 1,110 subjects

divided into groups of 10, 40, and 100. They find a positive and significant group

size effect. Nosenzo et al. (2015) study four- and eight-player VCMs with a high and

low marginal per capita return (MPCR). They observe a positive effect of group size

in the low MPCR condition but a negative effect of group size in the high MPCR

condition. The evidence is more limited for infinitely repeated games. Lugovskyy

et al. (2017) is an exception as they compare finitely vs. infinitely repeated for two-

and four-player VCMs.

Closely related to this study are the recent N -player dilemma experiments by

Boczoń et al. (2024). They run infinitely repeated games with two, four and ten

players. Like our us, they study infinitely repeated N -player prisoner’s dilemma ex-

periments in conjunction with variations of the payoff parameters and make predic-

tions based on strategic uncertainty, as suggested by Blonski et al. (2011); Blonski

and Spagnolo (2015) and Dal Bó and Fréchette (2011).6 However, Boczoń et al.

(2024) are more directly concerned with the assessment of strategic uncertainty.

5Dolbear et al. (1968) present a finitely repeated oligopoly experiment with differentiated price
competition, where a firm’s sales and profits depend only on the average price of its competitors,
regardless of their number. Their results are difficult to compare because their experiments have an
uncertain duration, sometimes incomplete payoff information, and a continuous action set which
allows for below-Nash pricing.

6Strategic uncertainty has recently found other interesting and important applications. Ghidoni
and Suetens (2022) and Kartal and Müller (2021) show theoretically how strategic uncertainty in
the prisoner’s dilemma is affected when moves are sequential rather than simultaneous, and they
provide experimental evidence confirming these effects.
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They use the N -player dilemma with both perfectly correlated and independent

beliefs (player’s expectations over the opponents’ cooperativeness) as a tool. They

also analyze how explicit communication affects strategic uncertainty. The focus of

our paper is an evaluation of the comparative statics of N for a larger set of group

sizes in the N -player game to see how these differ from those in the two-player case.

The two papers also also differ in other more technical dimensions.7

As for dilemma experiments in in continuous time, the seminal contribution is

Friedman and Oprea (2012). They find very high cooperation rates, higher than

in comparable discrete-time variants. Bigoni et al. (2015) run two-player prisoner’s

dilemmas in continuous time and show that a deterministic horizon leads to more

cooperation than an indefinite horizon. Friedman et al. (2015) run Cournot two-

and three-player games over 1,200 periods and find some cooperation after an initial

competitive phase. For medium-sized groups, Oprea et al. (2014) find some coop-

eration in four-player public goods experiments. However, this depends on whether

time is continuous or discrete and on the availability of communication. At the lower

end of the spectrum, Benndorf et al. (2021) find near-zero cooperation in groups of

12.8 Our experiment is the first to use a continuous action space for the prisoner’s

dilemma with N ≥ 2, and the first to use continuous time to test a wide range of

group sizes.

There are few prisoner’s dilemma experiments in which the action set differs from

the standard two pure actions. See Gangadharan and Nikiforakis (2009), Lugovskyy

et al. (2017), and Heuer and Orland (2019). We discuss these in Section 5.

7The two experiments have a different payoff structure when N > 2: In the design of Boczoń
et al. (2024), rival cooperation is only successful when all of the other N − 1 players cooperate,
resembling Bertrand competition. In contrast, we pay a payoff weighted by the number of cooper-
ating/defecting rival players. Boczoń et al. (2024) assume that the unilateral gain from defection
equals the unilateral loss from cooperation.

8 Benndorf et al. (2021) analyze a large number of different 2×2 games in continuous-time
experiments. Here, we refer to the prisoner’s dilemma games played in the single-population
setup. In this setting, players earn the expected payoff as if they were playing against the aggregate
strategy of their population. Since the population size is 12, it is essentially like playing in a group
of 12.
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Table 1. Stage-game matrices of the prisoner’s dilemma.

Normalized Neutral Defensive Offensive

Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect

Cooperate 1, 1 −l, 1 + g 14, 14 6, 18 14, 14 2, 18 14, 14 6, 22
Defect 1 + g, −l 0, 0 18, 6 10, 10 18, 2 10, 10 22, 6 10, 10

3 The Experiment

3.1 Design

We implement a series of experimental prisoner’s dilemma supergames in a mul-

tiplayer environment. The main treatment variable is the group size, with five

realizations, N ∈ {2, 3, 4, 6, 9}.
In theN = 2 version of a prisoner’s dilemma game, players simultaneously choose

whether to cooperate (C) or defect (D) and receive payoffs according to a matrix of

the form R S

T P

 .

The four entries are: the reward for joint cooperation, R, the temptation payoff

resulting from unilateral defection when the other player cooperates, T , the sucker

payoff resulting from cooperation when the other player defects, S, and the pun-

ishment payoff from mutual defection, P . The constraint T > R > P > S makes

D the dominant strategy. It is useful to normalize the payoffs to facilitate com-

parisons between different experimental designs. By scaling R to 1 and P to 0,

the two normalized off-diagonal entries are as in the left matrix of Table 1, with

g = (T − P )/(R− P )− 1 > 0 and l = (P − S)/(R− P ) > 0. With this normaliza-

tion, g is the gain from unilateral defection whereas −l is the loss from unilateral

cooperation.

The following prisoner’s dilemma game for N ≥ 2 players ensures that the pay-

offs in the key outcomes (all cooperate, all defect, and unilateral cooperation and

defection) remain constant as we vary the group size. For a player i in a group of

size N , c̄−i = m/(N − 1) denotes the fraction of cooperators among the N − 1 other

players (m ≤ N − 1). The normalized payoffs of player i from choosing C and D

are then πi(Ci, c̄−i) = c̄−i − (1 − c̄−i) l and πi(Di, c̄−i) = c̄−i(1 + g). The reward
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from full cooperation is πi(Ci, 1) = 1, the payoff from all defect is πi(Di, 0) = 0,

the temptation to defect unilaterally is π(Di, 1) = 1+ g, and the payoff to a unilat-

eral cooperator is πi(Ci, 0) = −l. Thus, these payoffs are the same as for N = 2,

regardless of the group size.

The second treatment variable concerns the stage-game payoffs. Participants

in the experiment play the three different payoff matrices shown in Table 1, to

the right of the normalized game. We refer to them as neutral, defensive, and

offensive, following Dixit (2003) and Heller and Mohlin (2018). The payoffs from

joint cooperation and complete defection are 14 and 10, respectively, in all games.

This yields an efficiency gain from cooperation of 40%, common across treatments.

The neutral matrix serves as the base case with l = g = 1. The defensive and

offensive matrices are derived from the neutral one by increasing either l or g by

one. In the defensive prisoner’s dilemma, the incentive to defect is greater against

a defector than against a cooperator (l = 2 > g = 1). The opposite is true in the

offensive case (l = 1 < g = 2).9

Supergames are implemented in continuous time, as infinitely repeated games

with an expected duration of 60 seconds. The experiments were run with ConG

(Pettit et al., 2014), a software package for continuous-time experiments.10 In each

supergame, subjects had 30 seconds to make their initial choice before continuous

play began. The stopping time, T , of each supergame was determined by one ran-

dom draw from the exponential distribution with an inverse scale of 1/60 s. The

expected length of the games did not vary and subjects had no prior information on

the actual duration. The underlying stochastic termination rule was explained in

the instructions (see the Supplementary Material) in two complementary ways: by

showing a mock sample of lengths (including unusually short and long supergames)

9 With respect to other prisoner’s dilemma experiments in continuous time, Bigoni et al. (2015)
implement a matrix with l = 2 and g = 1, as in our defensive case. Friedman and Oprea (2012)
use four prisoner’s dilemma matrices, allowing for changes in the diagonal entries. Their Easy and
Hard games are neutral, with l = g = 2/3 and l = g = 4, respectively. Their Mix-a and Mix-b
variants are offensive (l = 2/3, g = 4/3) and defensive (l = 4, g = 2), respectively, both with a 1 : 2
ratio, similar to our design.

10 All relevant information about the state of the system (choices, payoffs, history timelines, etc.)
was recorded at very rapid intervals of 0.1 seconds. To put this scale into perspective, the only
other quasi-continuous time experiment with an stochastic termination rule (that we are aware of)
is Bigoni et al. (2015), who define intervals of 0.16 seconds in z-Tree. Other ConG experiments
with deterministic duration use similar scales (Friedman and Oprea, 2012; Benndorf et al., 2021).
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and by providing a discrete-time analog of a high continuation probability (0.9983̄),

as done in Bigoni et al. (2015).11 We committed to a seeded sequence of random

realizations to allow for replications and extensions of the study. The realized du-

rations in the experiments (126 observations) show that the experimental sample

of game durations and the exponential distribution are not significantly different

(Anderson-Darling test, p = 0.779).

Figure 1 illustrates our experimental design. In each session, there are 24 sub-

jects who were divided into groups with 2, 3, 4, 6, and 9 players in each supergame.

Subjects played 21 supergames in all sessions. Each supergame was randomly as-

signed one of the three prisoner’s dilemma matrices in Table 1 as the base game.

The only restriction was that each payoff matrix should be used seven times per

session. In other words, while the payoff matrix was random in every supergame,

the draw was without replacement at the session level. Our design implies that five

groups of different sizes played parallel games with one specific combination of pay-

off matrix and supergame duration in each of the 21 supergames. Figure 1 provides

an example. The comparisons of the group size and game matrix is within subjects

accordingly.12 The player partitions were randomized and reshuffled prior to the

start of each supergame.13 Subjects were informed that no distinct group compo-

sition would be repeated more than once per session. (Group composition would

be reshuffled until this constraint was met). To reiterate: The group size was not

random. The payoff matrix was random without replacement. The length of a su-

pergame was random. Player partitions were random, subject to the aforementioned

constraint.

11 The following calculation illustrates this. Consider the stopping time in a discrete time
infinitely repeated game, T∆t. This is a geometric random variable with parameter 1−δ∆t = λ∆t,
where λ is a fixed positive parameter and ∆t is the length of each time step in the stochastic game.
When ∆t is sufficiently small, the distribution of the geometric random variable T∆t tends to an
exponential random variable with λ as the inverse of the expected duration: λ = 1/⟨T ⟩. For the
particular case of our experiment, we get δ∆t = 1−∆t/⟨T ⟩ = 1− 0.1 s/60 s = 0.9983̄.

12One rationale for using a within-subjects design is cost effectiveness as this design requires
fewer participants than a between-subjects design. A second motive is that we expected subjects
to learn whether or not to cooperate when they experience different group sizes. See footnote 24
with evidence on this. A downside of a within-subjects design is that carryover or order effects
can occur. We addressed this issue in the econometric analysis by including dummy variables that
capture the properties of the previously played game. The results in Table 2 suggest that order
effects were probably not overly strong.

13 The median subject in the Pure experiment participated two times in a group of size N = 2,
three times with N = 3, three times with N = 4, five times with N = 6, and eight times with
N = 9.
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Figure 1. Experimental design. Example of one session: Subject 18 played the
Neutral game in a group of 4 in supergame 1, the Offensive game in a group of 6 in
supergame 2, and the Neutral game again in a group of 2 in supergame 21. Column
T shows the random duration of the supergames.

The decision screen (see screenshot in the instructions in the Supplementary

Material) continuously informed subjects about their own action, the proportion of

cooperators (“A” players) in their group, and their current and cumulative payoffs

in this supergame. In N > 2 groups, subjects can infer how many cooperators are

in the group, but they do not know who defected.

Finally, we run the N -player supergames in two basic variants that differ in the

set of available actions, and we will refer to the two variants as Pure and Cont. In

the Pure experiment, subjects had to select a pure action, either to cooperate (C)

or to defect (D). In the Cont experiment, subjects could also choose intermediate

levels of cooperation by fixing any action between zero and one with a slider.14 Let

σi ∈ (0, 1) denote player i’s action, meaning that she cooperates with weight σi and

defects with 1− σi. Then, her realized payoff in the Cont treatment reads:

σi

∑
j ̸=i σj − (1− σj)l

N − 1
+ (1− σi)

∑
j ̸=i σj(1 + g)

N − 1
. (1)

That is, subjects choose and realize intermediate levels of cooperation, they do not

randomize between the two pure strategies. The computer interface is implemented

with a customized extension of ConG (Pettit et al., 2014). Screenshots are available

as part of the instructions in the Supplementary Material.

14 The multiplayer extension of the prisoner’s dilemma, explained above for Pure strategies, also
holds in Cont, interpreting c̄−i as the average level of cooperation among the N − 1 co-players
(continuous between 0 and 1).
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3.2 Theoretical background

Consider the normalized game in Table 1, repeated infinitely many times. Future

payoffs are discounted with a factor δ. Appendix A contains detailed derivations

and refers to the general payoffs (R, T, S, P ).

We begin with the Pure experiment. A first benchmark for cooperation is the

default minimum discount factor when players follow a grim-trigger strategy (start

by cooperating, and defect forever if a player defected in a previous round). Co-

operating yields 1/(1− δ), while defecting yields 1 + g. The grim trigger is thus

a subgame-perfect Nash equilibrium if the following holds for the actual discount

factor:

δ >
g

1 + g
≡ δ. (2)

The discount factor implemented in the experiments (δ = 0.9983̄) exceeds this

threshold, relevant to all treatments.

Whereas our design ensures that the various payoffs do not depend on N (δ

is the same for all group sizes), the minimum discount factor does differ for the

different payoff matrices. The g payoff in Neutral and Defensive (both g = 1) is

different from the one in Offensive (g = 2), so we obtain δNeutral = δDefensive = 1/2

and δOffensive = 2/3. Defensive differs from Neutral and Offensive with respect to

the l payoff, but the standard minimum discount factor does not take into account

the loss from unilateral cooperation as it merely reflects incentives to defect from a

given equilibrium.

We now assume that players face strategic uncertainty (Blonski et al., 2011;

Blonski and Spagnolo, 2015; Dal Bó and Fréchette, 2011). Players choose between

two repeated-game strategies, grim trigger (GT) and always defect (AD), but they

are uncertain of the strategy their opponents will play. Let p be the (identical)

probability that any of i’s opponents play GT, and 1− p is the probability that any

player ̸= i plays AD. We generalize existing two-player analyses to the N -player

case.

We calculate the expected payoffs from GT and AD. First, suppose that player i

plays GT. After the initial period (that is, in t = 1), there are only two contingencies.

With probability pN−1, all players cooperate in t = 0 and, accordingly, earn R = 1

throughout the supergame, yielding an expected payoff of pN−1δ/(1− δ). With the

10



counter probability, at least one rival player fails to cooperate in t = 0 and therefore

everyone defects afterwards such that payoffs are P = 0. Period t = 0 is a bit more

complicated, since the expected payoff is given by the different combinations with

which i faces m cooperators, 0 ≤ m ≤ N − 1. In Appendix A, we show that the

expected payoff from playing GT in t = 0 boils down to p − (1 − p) l. Altogether,

p − (1 − p) l + pN−1δ/(1− δ) is player i’s discounted payoff from GT. Now assume

player i chooses AD. Regardless of the choices of the other players, the initial defect

action triggers defection by all players in periods t = 1, ...,∞ and payoffs are zero. In

t = 0, the expected payoff from choosing AD is p·(1+g)+(1−p)·0 (see Appendix A).

Accordingly, p (1+g) is the discounted payoff from playing AD. Comparing expected

payoffs from GT versus AD, we find that p − (1 − p) l + pN−1δ/(1− δ) ≥ p (1 + g)

if and only if
δ

1− δ
≥ l

pN−1
+

g − l

pN−2
. (3)

This is a N -player condition for the emergence of cooperation (playing GT).

From (3), N -player versions of measures of strategic uncertainty can be obtained,

and further results in the literature can be recovered. Blonski et al. (2011) and

Blonski and Spagnolo (2015) propose an alternative minimum discount factor, δ∗.

If this benchmark is exceeded, GT is the risk dominant strategy. So, the larger δ∗,

the less likely a player is to cooperate. We solve (3) for δ and obtain:

δ ≥ gp+ l(1− p)

gp+ l(1− p) + pN−1
. (4)

Intuitively, if p = 1 in (4), the standard minimum discount factor, g/(1 + g) as in

(2), results, and if p = 0, (4) becomes δ ≥ 1. For equilibrium selection according to

risk dominance, a common assumption is p = 1/2, in which case (4) yields:

δ ≥ g + l

g + l +
(
1
2

)N−2
≡ δ∗. (5)

For N = 2, we obtain δ∗ = (g + l)/(g + l + 1), the result of Blonski et al. (2011)

and Blonski and Spagnolo (2015).

Dal Bó and Fréchette (2011, 2018) suggest the size of the basin of attraction

of AD (sizeBAD). This is the belief of GT that would leave a player indifferent
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Figure 2. Alternative minimum discount factor δ∗ as in (5), and sizeBAD as in (6)
as functions of N and for the Neutral game.

between the two strategies, given the actual discount factor used in the experiment.

The larger sizeBAD, the less likely a player will cooperate. The N -player sizeBAD

is only implicitly defined by (3), but an explicit solution can be obtained for the

Neutral matrix (g = l)

p =

(
l
1− δ

δ

) 1
N−1

. (6)

This is exactly the result of Boczoń et al. (2024) who generally impose g = l.

For N = 2, (3) implies the finding of Ghidoni and Suetens (2022) which, for the

normalized payoffs, reads p ≥ l/(l − g + δ/(1− δ)).

What predictions does this analysis suggest for group size, N?15 Figure 2 shows

for the Neutral game matrix δ∗ as in (5) and sizeBAD as in (6). Both metrics

increase monotonically in N . This is true in general, not just for the Neutral matrix,

as follows from (3) and (4). See Table 3 in the Supplemental Material which lists the

numerical realizations of the sizeBAD (3) and δ∗ (5) measures for the experimental

group sizes and payoff matrices. We conclude:

Prediction 1 (Pure). Group size has a negative effect on cooperation rates.

15Because δ = 0.9983̄ > δ∗ throughout, cooperating is the risk-dominant equilibrium. Since all
experiments were run with the same δ, using the difference δ− δ∗ instead of δ∗ does not yield any
additional insights.
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We turn to the effects of the payoff matrices. Compared to Neutral, the Defensive

and Offensive matrices are generally an obstacle to cooperation. Defensive and

Offensive increase either l or g compared to Neutral, so the right-hand side in (3)

and the expressions in (4) and (5) increase.

Prediction 2 (Pure). Cooperation rates are lower in Defensive and Offensive,

compared to Neutral.

Although Predictions 1 and 2 can in principle both be supported by the data,

they are potentially conflicting. We expect the impact of group size on cooperation

to be smaller with the Defensive and Offensive payoff matrices than with the Neutral

one due to a ceiling effect. Cooperation should indeed be more difficult to achieve

and maintain, even when subjects interact in pairs.16 Put differently, the group size

should only have a smaller impact in Defensive and Offensive:

Prediction 3 (Pure). Group size has a smaller impact on cooperation in Defensive

and Offensive, compared to Neutral.

Comparing Defensive and Offensive turns out to be ambiguous. To begin with,

Offensive and Defensive share the same δ∗: In (5), only the sum g + l matters for

δ∗, and g + l is the same for Offensive and Defensive. However, the more general

benchmark (4) is the same for Offensive and Defensive if and only if p = 1/2, and

it is greater for Defensive [greater for Offensive] if and only if p < [>] 1/2.17 This is

intuitive: When players believe that rival cooperation is likely, the defection payoff,

d, is important, while the loss from cooperation, l, is not. And vice versa when

beliefs are low. As for sizeBAD, given the δ and N used in the experiment, the

minimum belief required to play GT is larger in the Defensive treatment compared

to Offensive, see Table 3 in the Supplemental Material. This is consistent with (4)

in that sizeBAD is less than one half for the experimental parameters (see Figure

2). If participants have different beliefs, or if they perceive the discount factor to be

lower than implemented, the reverse sizeBAD prediction holds. We therefore refrain

from making a prediction regarding Offensive vs. Defensive.

16See also Table 3 in the Supplementary Material. The δ∗ entries are smaller for Neutral than
for Defensive/Offensive throughout, but this difference is smaller for larger N .

17See Andres et al. (2023) for a detailed analysis of how δ∗ is affected by beliefs.
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We now turn to the Cont treatment. Given player i’s action σi ∈ (0, 1) and her

rivals’ actions σj ̸=i, equation (1) states the realized payoffs. The continuous action

set allows for lower cooperation levels σi ∈ (0, 1), that is, players cooperate less

than 100% and defect with a positive weight. Such limited defection is part of the

cooperative strategy and is observable for all players. It can thus be distinguished

from full defection which is still the myopic best reply and, in fact, the dominant

action.

We focus on symmetric cooperative equilibria where σ1 = σ2 = ... = σN = σ ∈
(0, 1]. Using (1), the R payoff when all players cooperate with σ and defect with 1−σ

simplifies to R = σ(1 + (g − l)(1 − σ)). The payoff from unilateral defection (that

is, σi = 0 and σ ̸=i = σ) reads T = σ(1 + g) whereas unilateral cooperation (σi = σ

and σ̸=i = 0) yields S = −σl. The all-defect payoff remains P = 0. Substituting

σ = 1 in these formulas yields the corresponding payoffs in the Pure setting whereas

employing σ = 0 (all defect) implies zero payoffs in all cases.

Next, we derive the minimum discount factor required for a GT strategy to be a

subgame-perfect equilibrium. Using the above payoffs for R,D and T , one obtains

δ =
l + σ(g − l)

1 + g

for the continuous-action-set case, where σ = 1 implies δ = g/(1 + g) as in (2).

The question is whether a lower cooperation level in Cont, σ ∈ (0, 1), can reduce

the minimum discount factor compared to the one under full cooperation, σ = 1 (as

in Pure). The sign of ∂δ/∂σ depends on the sign of g − l: For our Neutral (g = l)

setup, we obtain δ = 1/2 for all σ, unchanged to the Pure case. For the Defensive

(g = 1 < l = 2) treatment, we obtain δ = 1 − σ/2, so cooperating with σ ∈ (0, 1)

increases the minimum discount factor required compared to full cooperation. This

suggests that, as with the Pure action set, cooperation will be more difficult than

with Neutral. In Offensive (g = 2 > l = 1), we get δ = (1 + σ)/3, so cooperating

with σ ∈ (0, 1) requires a lower minimum discount factor than cooperating with

σ = 1. We conclude that lower cooperation levels σ ∈ (0, 1) can be more plausible

in Offensive than in Defensive or Neutral. For low levels of cooperation (σ ≤ 1/2),

we obtain for Offensive that δ = (1+σ)/3 ≤ 1/2. Hence, there exist levels of δ such

that cooperation with σ ∈ (0, 1/2) can be an equilibrium in Cont but not in Pure

14



(where σ = 1). We dismiss this case because the actual discount factor implemented

in the experiment is much larger than 1/2, and, even of this was not the case, the

cooperation level would need to be substantially lower, such that cooperation can

hardly be claimed to improve.18 In Appendix A, we extend our N -player condition

for the emergence of cooperation (3) for a continuous action set. As with pure

strategies, the analysis for the continuous action set suggest that larger group sizes

will be an impediment to cooperation.

Prediction 4 (Cont). Group size has a negative impact on cooperation rates.

Prediction 5 (Cont). Cooperation rates are lower in Defensive and Offensive

compared to Neutral.

Prediction 6 (Cont). Group size has less impact in Defensive and Offensive,

compared to Neutral.

3.3 Procedures

We conducted six sessions, three for Pure and three for Cont. No subject partic-

ipated in more than one session and all sessions included 24 subjects, except for

one session with 22 subjects.19 This makes a total of 142 participants. Appendix B

contains power calculations for this sample size and the type of empirical analysis.

Subjects’ earnings in the experiment were determined by the combination of

their own and their rivals’ choices, summed over the duration of each supergame,

and scaled with respect to the expected length. While playing a supergame s, each

individual i accumulated earnings Πi, s ≡ 1
60

∫ Ts

0
πi(σi, s,t, c̄−i, s,t) dt. The final payout

to each subject was the average of the 21 supergames. Participants earned between

e10 and e18.

Further details of the experimental procedures were as follows. The experiments

took place at the DICElab of the University of Duesseldorf. We conducted the ex-

periments between May 6 and May 20 2019, beginning with the three Pure sessions.

18Similar partially cooperative equilibria may also exist in the Pure setting. When risk-neutral
players randomize and their mixed strategies are observable, the equilibria resemble the low-
cooperation level equilibria in the Cont variant.

19 In that session, we had two groups of four players and none with six players.
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Figure 3. (a) Mean cooperation in Pure by group size N , 95% confidence intervals
based on bootstrapped standard errors clustered at the session level. (b) Evolution
of average group cooperation over supergames in Pure. For both panels, the unit of
observation is defined as in footnote 20.

No pilot sessions were conducted. Subjects were recruited from the lab subject pool

using ORSEE (Greiner, 2015). Upon arrival at the lab, participants were randomly

assigned a cubicle number. Printed instructions were distributed and summarized

verbally. Participants were also given ample opportunity to ask questions individu-

ally and privately. The expected duration of the supergames is invariant (60 s), but

the realized durations naturally differ. After the 21 supergames were completed,

we collected additional data on demographics and individual preferences. Subjects

completed a questionnaire based on Falk et al. (2016, 2018)–details are available

in Table 4 in the Supplementary Material. The average duration of the sessions

including the time for reading the instructions, the questionnaires, and payout was

around one hour. The experiments themselves took about half an hour. We main-

tained anonymity throughout.

4 Results

We begin with an analysis of the Pure experiment in Section 4.1. Section 4.2 analyzes

the Cont data. For the regression results, we report non-parametric bootstrapped

standard errors, repeatedly resampling the observed data with replacement and
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Figure 4. Evolution of cooperation over time, by group size N , Pure data, group
averages are conditional on a group being active: Out of the initial 63 groups, 43
were active after 30 seconds, 24 after 60 seconds, 15 after 90 seconds, and 8 after
120 seconds (for all N).

recalculating the standard errors that are clustered at the session level. The results

are robust when using regular (non-bootstrapped) standard errors either clustered

at the session or subject level, or with subject fixed effects.

4.1 The Pure experiment

The effect of the number of players

Figure 3a shows the average cooperation rates for the different group sizes. Consis-

tent with Prediction 1, cooperation rates decrease monotonically with group size.

The treatment variable N seems to produce a smooth pattern, a decrease of coop-

eration in N . The highest cooperation rates are obtained for the smallest groups,

with a mean of ⟨c̄⟩ = 0.572 for N = 2, and the lowest rates are observed for N = 9,

with a mean of ⟨c̄⟩ = 0.132.20 In Table 2 below, we report regression analyses that

confirm the statistical significance of these findings.

How does average play develop over the course of the 21 supergames? Figure 3b

shows the moving mean of group cooperation rates for all N , with a span of three

20 Averaging the data at the group-supergame level, the experiment contains 315 data points,
namely five group sizes in 21 supergames, times three sessions. Let ci,t be the cooperation level

of player i at time t in a supergame, and c̄t = 1
N

∑N
i ci,t be the mean cooperation level among

the N players that form a group. Then group cooperation rates are defined as time-averages,

⟨c̄⟩ = 1
T

∫ T

0
c̄t dt, where ⟨⟩ indicate that the average is taken at the group level, and T is the

realized length of the supergame. Figure 10 in the Supplementary Material provides additional
details by session.
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Figure 5. Fraction of time spent in the different outcomes, Pure data.

supergames to reduce noise. Cooperation in small groups increase over supergames.

In the last seven supergames, the cooperation rates are 29.3 (45.3) percentage points

for N = 2 (N = 3) higher than in the first seven supergames. That is, subjects learn

to cooperate with supergame repetition. This is not the case for the larger groups

with N ≥ 4.

Not only do subjects gain experience in how to play across supergames, but

cooperation also shows pronounced time trends within supergames. Figure 4 shows

five timelines, one for each N . Cooperation decreases with time, especially in the

first 30 to 50 seconds. Cooperation rates for N = 2 suffer the least from this decrease

over time. Groups of three players start with a decrease, but manage to increase

again, seem to stabilize towards the end of the interval, and later reach the level of

the N = 2 groups.21 The negative effect of duration on cooperation is stronger for

N ≥ 4. They lose almost all of their cooperative choices within the first minute of

play.

The time trends in the data raise the question of miscoordination. To what

extent do players coordinate on outcomes where all players cooperate or defect?

Figure 5 shows coordination rates over time in five panels, one corresponding to

each group size. The data are summarized in bins of 30 seconds, with the last bin

21The increase in the average cooperation of the N = 3 groups at about 50 seconds in Figure 4
seems to be the result of several groups being able to coordinate on cooperative outcomes again,
after the marked initial drop that is also seen for N > 3. Consistent with this, Figure 5 shows an
increase in the proportion of “all cooperate” states beginning after the 30 second bin. Conspic-
uously, the reverse trend for the N = 3 groups in Figure 4 occurs when cooperation rates were
rather low (below 10%), and the reverse differs from the trend of the N = 2 groups which (at least
on average) did not experience such low cooperation rates.
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Figure 6. Average group cooperation conditional on payoff matrix, N, D, and O
refer to the Neutral, Defensive, and Offensive payoff matrix, respectively, 2–9 refer
to the group size, 95% confidence intervals based on estimations with bootstrapped
standard errors clustered at the session level, Pure data.

containing all t > 120 s. We highlight the outcomes ⟨c̄⟩ = 0 (all defect) in gray,

⟨c̄⟩ = 1 (all cooperate) in black and pool in gray all other outcomes involving some

degree of coordination failure. For the groups with N ≤ 3, there is a substantial

share of full cooperation outcomes right at the beginning of the supergame. For

N = 2, this share declines moderately over time. The N = 3 groups manage to

increase the proportion of ⟨c̄⟩ = 1 states and reduce the share of miscoordination

after the first bin. For groups with N ≥ 4, there are few or no full cooperation

outcomes. The outcome where all players defect already accounts for roughly 40%

of the outcomes in the first bin and, over the course of the play, the proportion

of coordination failures (shown as “Other”) decreases and is replaced by complete

defections.

Whereas the average cooperation rates in Figure 3a decrease gradually and

smoothly in N , Figure 5 rather suggests an abrupt collapse of “all C” for groups

of four or more players. This is not contradictory: The pronounced decline in co-

operation during the first minute, as shown in Figure 4, is reflected by the high

degree of coordination failure in the first bins of Figure 5. The decrease also implies

that the average cooperation differs in a less pronounced manner than the rate of

coordination on “all C”.
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The impact of the payoff matrices

We will now address the question of how significant the various payoff matrices

are. Figure 6 shows the cooperation rates per matrix conditional on group size.

For a given N , there is more cooperation with the Neutral payoff matrix than with

Defensive payoffs, and more with Defensive payoffs than with the Offensive matrix

throughout. This is consistent with Prediction 2. (As noted in the theory section, we

do not make a prediction regarding Offensive vs. Defensive.) For all three matrices,

cooperation decreases monotonically in N .

Regression analysis

The linear probability models in Table 2 provide a thorough econometric analysis

and formal testing of our predictions. The dependent variable in all regressions

is the time-averaged cooperation rate of subject i in supergame s.22 Our main

independent variables are the continuous variable Group Size, Ni,s and the dummy

variables for the Defensive (d.) and Offensive (d.) payoff matrices. To address the

issue of experience, we add the continuous variable Supergame to the regression,

and we also include the length of the supergame (Length Ts), also continuous. We

interact the main variables with the dummy variable for the Cont (d.) treatment

(discussed below), so that the effects of the independent variables can be obtained

from the table for both the Pure and Cont treatments. Regression (1) includes the

main variables and their interactions with with the Cont (d.). Regression (2) adds

the interactions with group size. Regression (3) additionally includes three sets of

control variables.

In regression (1), the non-interacted coefficients (the first set of regressors) apply

to the Pure data. We find that the coefficient of Group size, Ni,s is negative and

significant, consistent with Prediction 1. We also see that Offensive and Defensive

have a negative and significant effect on cooperation, consistent with Prediction 2.

Supergame is positive and (weakly) significant, confirming the descriptive evidence

in Figure 3b. Length, Ts /60 s is negative and significant, as is evident from the

22With 142 subjects and 21 supergames, there are 2,982 observations. The specification in the
last column includes variables referring to the previous supergame, resulting in the removal of
142 observations. An additional 240 observations were dropped due to 12 subjects for whom the
questionnaire measures were unavailable.
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Table 2. Regression analyses of cooperation choices

Cooperation, ci,s

(1) (2) (3)

Group size, Ni, s =0.047*** (0.006) =0.034*** (0.008) =0.037*** (0.005)
Defensive (d.) =0.091*** (0.025) =0.192*** (0.030) =0.191*** (0.021)
Offensive (d.) =0.123*** (0.020) =0.278*** (0.045) =0.247*** (0.049)
Supergame 0.004* (0.002) 0.021** (0.008) 0.019*** (0.007)
Length, Ts / 60 s =0.075*** (0.020) =0.095** (0.039) =0.088* (0.053)

Cont (d.) =0.289*** (0.036) =0.283*** (0.083) =0.249* (0.129)
Group size, Ni, s × Cont (d.) 0.036*** (0.007) 0.035*** (0.011) 0.036*** (0.012)
Defensive (d.) × Cont (d.) 0.089*** (0.028) 0.209*** (0.044) 0.193*** (0.051)
Offensive (d.) × Cont (d.) 0.073* (0.041) 0.144** (0.065) 0.085 (0.058)
Supergame × Cont (d.) =0.005** (0.002) =0.015* (0.009) =0.013 (0.009)
Length, Ts / 60 s × Cont (d.) 0.026 (0.032) 0.070 (0.067) 0.060 (0.071)

Defensive (d.) × Group size, Ni, s 0.017** (0.007) 0.017*** (0.005)
Offensive (d.) × Group size, Ni, s 0.025*** (0.004) 0.023*** (0.004)
Supergame × Group size, Ni, s =0.003*** (0.001) =0.002*** (0.001)
Length, Ts / 60 s × Group size, Ni, s 0.003 (0.004) 0.002 (0.006)

Defensive (d.) × Group size, Ni, s × Cont (d.) =0.020** (0.008) =0.018** (0.007)
Offensive (d.) × Group size, Ni, s × Cont (d.) =0.011* (0.007) =0.004 (0.006)
Supergame × Group size, Ni, s × Cont (d.) 0.002 (0.001) 0.001 (0.001)
Length, Ts / 60 s × Group size, Ni, s × Cont (d.) =0.007 (0.007) =0.006 (0.008)

Previous supergame:

Group smaller previsous game 0.006 (0.010)
Defensive previous game =0.002 (0.024)
Offensive previous game 0.002 (0.024)
Length, Ts / 60 s previous game 0.029** (0.013)

Demographics:
Age =0.002* (0.001)
Female (d.) =0.054*** (0.012)
Lab experience (cat.) =0.008 (0.014)
Bachelor (d.) =0.089 (0.069)
Master (d.) =0.126** (0.056)
Economics & Business (d.) =0.028 (0.048)
Science & Medicine (d.) =0.044 (0.059)
Arts, Humanities & Law (d.) =0.072* (0.038)

Preference survey:

Risk taking =0.031** (0.013)
Time discounting 0.007 (0.015)
Trust 0.030** (0.012)
Altruism 0.028 (0.019)
Positive reciprocity =0.009 (0.023)
Negative reciprocity =0.000 (0.011)

Constant 0.621*** (0.021) 0.546*** (0.056) 0.748*** (0.082)

Observations 2982 2982 2600
Adjusted R2 0.171 0.192 0.236

1 Linear regressions, bootstrapped standard errors, clustered at the session level
2 One unit of observation is the cooperation rate (time-average) of subject i in supergame s
3 Significance levels: *, **, and *** indicate p-values lower than 0.10, 0.05, and 0.01, respectively.

negative time trends in Figure 4.

When we add the interactions with Group size, Ni,s in regressions (2) and (3),23

23While the (non-interacted) main variables discussed above are still statistically significant and
have the same sign also in regressions (2) and (3), their interpretation changes: Group size, Ni,s

only applies to the Neutral matrix and the coefficients of the other main variables correspond to a
hypothetical group size of zero.

21



we expect from Prediction 3 a diminished effect of the group size with the Defensive

and Offensive payoff matrix. The regressions confirm this: Defensive (d.) × Group

size, Ni,s and Offensive (d.) × Group size, Ni,s are both positive and significant.

They further suggests that the effect of Supergame is weaker in larger groups, as the

interaction Supergame×Group size, Ni,s is in regression (2) negative and significant.

Length, Ts /60 s × Group size, Ni,s is insignificant.

Prediction 3 leaves open the question of whether the group size has a significant

overall impact for these payoff matrices. To answer this question, we tested the

conditional effect of group size for the Defensive payoff matrix, which is the sum

of the coefficients Group size, Ni,s and Defensive (d.) × Group size, Ni,s. This

conditional effect was negative and significant in post-hoc Wald tests of regression

(2) (p = 0.026), meaning that group size has a negative effect in Defensive. However,

the same is not true for Offensive where the sum of Group size, Ni,s and Offensive

(d.) × Group size, Ni,s is not significantly different from zero (p = 0.468). The

same holds in regression (3), with p < 0.001 for Defensive (d.) and p = 0.117 for

Offensive (d.) Since Group size, Ni,s alone is negative and significant in regressions

(2) and (3), we conclude that it negatively affects cooperation separately with the

Neutral and Defensive payoff matrix, but not with the Offensive one.

Regression (3) of Table 2 differs from regression (2) in that we add the three

sets of control variables: The properties of the previous supergame, demographic

characteristics, and the results of a preference survey. These controls are specific to

individual subjects.

Regarding the properties of the previous supergame in regression (3), we in-

cluded a dummy variable to indicate whether the subject was in a smaller group

previously, as well as two dummy variables to indicate whether the subject’s pre-

vious game matrix was Defensive or Offensive. We find that the “Group smaller

previous game” dummy variable and the payoff matrices of the previous supergame

have no significant impact. This is important because a correlation could have indi-

cated that order effects may be present due to the within-subjects design.24 We also

analyze the length of the previous supergame. The variable does have a positive

24 The same conclusion is supported by the results of Boczoń et al. (2024) who supplement
their between-subjects analysis with a within-subjects robustness check, but find no effect. Their
within-subjects data shows an even stronger effect when N changes from two to four than their
between-subjects data does.
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and significant effect on cooperation, confirming the evidence from the large meta

data set in Mengel et al. (2022).

As for the vector of demographic characteristics and the results of the preference

survey (Falk et al., 2016, 2018) in (3), it turns out that some of the demographic

characteristics are statistically significant: Age (weakly significant), female, grad-

uate student status (“Master”), and major (Arts, Humanities, and Law, weakly

significant). All of these have a negative sign. Among the individual’s preference

items, we observe that the risk measure is negative and significant, while the trust

measure is positive and significant. A main takeaway from adding the demographics

and the preference survey in (3) is that this does not change the our main results.25

Consistent with Predictions 1, 2 and 3, we summarize:

Result 1.– Conditional on cooperation being equally difficult to be supported in

equilibrium for all group sizes, we find that: (i) The average level of cooperation

decreases with the number of players, N . (ii) The Defensive and Offensive payoff

matrices negatively impact cooperation. (iii) Group size has a smaller impact on

cooperation with the Defensive and Offensive payoff matrices than with the Neutral

matrix.

The meta study of Dal Bó and Fréchette (2018) finds that the overall cooperation

in N = 2 supergames depends on and is largely similar to the initial choices. We

therefore implement the regressions in Table 2 also for the initial actions, omitting

supergame length (which was unknown when the initial action was chosen). As

the patterns of the initial choices are essentially the same as for the overall rate

of cooperation in Table 2 (including demographics and preferences), and as the

coefficients have similar magnitudes, we skip the details here and refer the reader to

Table 5 in the Supplementary Material.

25Three interactions are significant in regression (2) but not in regression (3). We discuss in
Section 4.2 that, whether these interpretations are significant, is immaterial to their interpretation.
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Figure 7. (a) Mean cooperation in the Cont experiment, by group size N , unit
of observation defined as in footnote 20, 95% confidence intervals based on boot-
strapped standard errors clustered at the session level, (b) Evolution of average
group cooperation over supergames in Cont, unit of observation defined as in foot-
note 20.

4.2 The Cont experiment

The effect of the number of players

Figure 7a shows the cooperation rates for the different group sizes in the Cont

experiment.26 A decrease of cooperation in the group size, N , is noticeable, but it

is not as pronounced as in the Pure data. Figure 7b shows the moving mean of

group cooperation rates for all N , with a span of three supergames to reduce noise.

Apart from short-lived surges toward the final supergames in the N = 2 and N = 3

groups, cooperation rates decline rather than increase. Overall, the impression from

Figure 7a and Figure 7b is that cooperation rates in Cont are low, and they are

substantially lower compared to Pure. While we do not have a prediction regarding

the comparison of Cont vs. Pure, the regression analysis in Table 2 (discussed under

“regression analysis”) confirms that the difference is significant.

Figure 8 shows that cooperation rates either decline pronouncedly (N > 3) or

stay roughly constant (N ≤ 3). But even for groups of two and three, the levels

26 Figure 11 in the Supplementary Material provides additional details by session.
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Figure 8. Evolution of cooperation over time, by group size N (Cont data), group
averages are conditional on a group being active: Out of the initial 63 groups, 34
were active after 30 seconds, 23 after 60 seconds, 13 after 90 seconds, and 5 after
120 seconds (for all N).

achieved are markedly lower than in Figure 4 (Pure data). An analysis of the

outcomes in Cont (as in Figure 5 for the Pure data) is not informative and hence

omitted: The fraction of groups where players manage to (virtually) all cooperate

is restricted to very few N = 2 groups.

The effect of the payoff matrices

Figure 9 shows how cooperation in Cont depends on the payoff matrix for a given

N . Contrary to Prediction 5 and the Pure treatment, the cooperation rates are not

always higher with the Neutral matrix. Neither does the Offensive matrix always

have the lowest cooperation rates as in Figure 6. While for the Neutral and the

Defensive matrix, cooperation rates decline in N (weak monotonicity), this is not the

case for the Offensive matrix. Furthermore, the large confidence intervals indicate

that any existing differences must be interpreted cautiously.

Regression analysis

Table 2 contains the linear probability models also for the Cont treatment. As

expected from the descriptive results, cooperation rates are significantly lower in

the Cont experiment. With the coefficient of Cont being −0.289 in regression (1),

the difference is substantial. We discuss this disruptive result in Section 5. Turning

to the interactions of the main regressors with the Cont treatment (variable × Cont

(d.)) in regression (1), we note that Group size, Ni, s, Defensive (d.), Offensive

(d.), Supergame, and Length, Ts /60 s when interacted with Cont (d.) all have the
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Figure 9. Average group cooperation conditional on payoff matrix, N, D, and O
refer to the Neutral, Defensive, and Offensive payoff matrix, respectively, 2–9 refer
to the group size, 95% confidence intervals based on estimations with bootstrapped
standard errors clustered at the session level, Cont data.

opposite sign as the non-interacted variables. This means that their effect is weaker

in Cont compared to the Pure treatment, which is intuitive because of the generally

lower cooperation level in the Cont treatment. In regression (1), the interaction is

significant for Group size, Ni, s, Defensive (d.) and Supergame, weakly significant

for Offensive (d.), and insignificant for Length, Ts /60 s.

We now analyze Predictions 4 and 5 with the help of regression (1). To see

whether the main variables Group size, Ni, s, Defensive (d.), and Offensive (d.) have

impact in Cont, we test their conditional effect for the Cont data by adding the

corresponding coefficient and its interaction. In post-hoc Wald tests, the sum of

Group size, Ni, s and Group size, Ni, s × Cont (d.) is significantly different from

zero (p = 0.007), as also evident in Figure 7a. As for the influence of the payoff

matrices in Cont, the sum of the coefficients Defensive (d.) and Defensive (d.) ×
Cont (d.) is not significantly different from zero (p = 0.847), and neither is the sum

of the coefficients of Offensive (d.) and Offensive (d.) × Cont (d.) (p = 0.143). We

conclude that there is support for Prediction 4 but not for Prediction 5.

A further set of regressors in regressions (2) and (3) includes the two-way in-

teractions of the main variables with the Cont treatment and group size (variable
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× Group size, Ni,s × Cont (d.)) which allows a test of Prediction 6. However,

the coefficients have the opposite sign that we expected. Defensive (d.) × Group

size, Ni, s × Cont (d.) is negative and significant (in both regression (2) and (3)),

and Offensive (d.) × Group size, Ni, s × Cont (d.) is negative and either weakly

significant (regression (2)) or not significant (in (3)). This means that the Defensive

and the Offensive payoff matrices are (significantly or not) more strongly correlated

with the group size than the Neutral matrix.

As above with the Pure data, we check whether there is a correlation of coopera-

tion and group size when we look at the payoff matrices separately. For the Neutral

matrix, we test whether Group size, Ni, s plus Group size, Ni, s × Cont (d.) differs

from zero. This is not the case (p = 0.877 in (2) and p = 0.953 in (3)). Whether

the group size has an effect for Defensive depends on whether the sum of Group

size, Ni, s, Group size, Ni, s × Cont (d.) and Defensive (d.) × Group size, Ni, s ×
Cont (d.) is negative and different from zero. This is the case in both in regres-

sion (2) (p = 0.042) and regression (3) (p = 0.011). For Offensive, the sum is not

significantly different from zero (p = 0.212 in (2) and p = 0.605 in (3)).27

Consistent with Prediction 4 but contradictory to Predictions 5 and 6, we con-

clude as follows:

Result 2.– Conditional on cooperation being equally difficult to be supported in

equilibrium for all group sizes, we find that: (i) Cooperation rates in Cont are

significantly lower than in Pure. (ii) The average level of cooperation decreases

with the number of players, N . (iii) The Offensive and Defensive payoff matrix

have no significant impact on cooperation. (iv) Group size has a greater impact on

cooperation with the Defensive matrix than with the Neutral matrix.

5 Discussion

A first main result is that, in the Pure treatment, group size has a negative effect on

cooperation rates. The result is significant because, in a methodological innovation,

our setup makes cooperation equally difficult to be supported in equilibrium for all

27A regression analysis of initial actions in the Cont treatment can be found in Supplementary
Material, Table 5.
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group sizes. In contrast, in previous experimental studies, increasing the number of

players can reduce cooperation, either because the larger groups make cooperative

outcomes harder to be supported in equilibrium, or because larger groups make

cooperative equilibria less likely to be selected. With our setup, we show that

increased strategic uncertainty matters in larger groups even though we control for

the minimum discount factor required for cooperation. This is consistent with the

theory of strategic risk in repeated games (Blonski et al., 2011; Blonski and Spagnolo,

2015; Dal Bó and Fréchette, 2011), which we extend from the two- to the multi-player

case: Larger groups make cooperation more difficult by increasing the risk that one

or more players choose a defective strategy. Boczoń et al. (2024) find similar effects

regarding the impact of strategic uncertainty in N -player games. By allowing for

communication between players, they demonstrate how strategic uncertainty can be

overcome and coordination can be improved. This finding is related to Oprea et al.

(2014) who find a strong impact of communication in a four-player public good game

when choices are in continuous time.

Coordination on the fully cooperative outcome is limited to two-player and three-

player groups, as noted for example in Huck et al. (2004), who succinctly put this re-

sult as “two are few and four are many”, Fonseca and Normann (2012), or Horstmann

et al. (2018). The fact that our experiments are in continuous time does not seem

to change this finding. Consistent with this, multi-period experiments show some

cooperation for two and three players (Oprea et al., 2014), but not for four players

(Oechssler et al., 2016).

Friedman and Oprea (2012) and Bigoni et al. (2015) also conduct prisoner’s

dilemma experiments in continuous time. Friedman and Oprea (2012) have games

with a finite duration of one minute (corresponding to the expected duration of our

games). The median cooperation rate in their Easy treatment (which is Neutral in

our terminology, see footnote 9) reads 0.931. With a median of 0.784 (all supergames,

N = 2), our rate for neutral games is similar, although not excessively proximate.

Bigoni et al. (2015) have “long stochastic” games with an expected duration of 60

seconds, as in our experiments, and the payoffs correspond exactly to our Defensive

setup (see footnote 9). Bigoni et al. (2015) find a cooperation rate of 0.669 (median

0.848). Figure 6 shows for N = 2 a mean cooperation rate of 0.655 in Defensive, and
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we find a median of 0.933. The similarity of the cooperation rates in our data may

seem surprising, since in our experiment each individual experiences more defections

and lower cooperation rates in the larger groups. However, this does not seem to

strongly affect cooperation in small groups.

The most disruptive and perhaps surprising result we find is the low level of coop-

eration in the Cont treatment. Related findings, although not that pronounced, have

been reported in finitely repeated settings. Gangadharan and Nikiforakis (2009) an-

alyze a linear public good game with two and ten actions. Consistent with our

results, they observe that the smaller action set somewhat improves the frequency

of cooperative actions in the initial periods with four players. Different from our

data, they find no effect in later periods and no change at all when there are two

players. Lugovskyy et al. (2017) provide evidence on differences in cooperation be-

tween comparable prisoner’s dilemma and public-good games. Their results suggest

that, framing the game as a (two-action) VCM game as opposed to the common

prisoner’s dilemma, may lead subjects to be more cooperative. They also find that

a binary-action VCM tends to cooperate better than the usual ten-action variant

(both finitely repeated). Finally, Heuer and Orland (2019) analyze a two-player one-

shot prisoner’s dilemma where subjects either choose one pure action (cooperate or

defect) or they can “mix” by deciding with how many out of ten rival players in

the session they (purely) cooperate or defect, respectively. With “mixing”, lower

cooperation rates result.

Given the low cooperation rates in Cont, we conclude that gradualism does not

occur in our data. Gradualism has been investigated, foremost theoretically, in dif-

ferent contexts by, for example, Sobel (1985), Kranton (1996) or Watson (2002).

For our prisoner’s dilemma, the notion of gradualism suggests that players initially

and cautiously choose low levels of cooperation. If matched by the other players,

they then slowly increase the cooperation. However, it is precisely this increase of

cooperation that does not occur because too few players are willing to make the

sacrifice, that is, raise their action and make others follow. A related experimental

finding was recently reported by Kartal et al. (2021) for two- vs. three-action trust

games. Kartal et al. (2021) find some evidence of gradualist strategies. They delin-

eate circumstances under which gradualism is clearly beneficial and when its effect
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is minor compared to “all-or-nothing” setups which can lead to drastically improved

trust levels.

6 Conclusion

We study cooperation in a social dilemma played by larger groups. We address

the research questions raised by the recent and growing literature on the two-player

prisoner’s dilemma: What are the determinants of cooperation? Does strategic

uncertainty matter? Given the importance of these questions, it is somewhat unfor-

tunate that the results have been obtained exclusively in two-player environments,

limiting the applicability of this research. We modify the two-action prisoner’s

dilemma to allow for arbitrary group sizes. Our innovative experiment controls for

strategic incentives (same minimum discount factor for all group sizes). This novel

design allows us to study larger group sizes using the same groundbreaking methods

proposed for the two-player game.

We find both intuitive comparative statics effects as well as counterintuitive

results: In addition to demonstrating the negative effect of group size on cooperation,

we confirm in a clean setting that cooperation is limited to relatively small groups

of two and three. Defect rates increase with group size. These results are consistent

with notions of strategic uncertainty. Some of the determinants of cooperation

found to be relevant in two-player games are quite similar and significant even in

larger groups. These results suggest a potential for cooperation in larger groups

if strategic uncertainty can be overcome. Finally, the availability of a continuous

action set, which emerges as a natural extension of the multiplayer setting, leads to

a drastic reduction in cooperative choices. While group size continues to influence

cooperation, other determinants do not have explanatory power here.

In terms of future research, it seems promising to relate some of our key findings

(conditional cooperation in large groups, but almost no cooperation with continuous

action sets) to the literature on conditional cooperation in public goods experiments.

The latter typically involve more than two players and more than two actions, but

they still differ from our setup. Analyzing both in a unified framework may tell us

more about the interaction of action space, group size and (conditional) cooperation.
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Appendix

A Mathematical Derivations

We begin with the non-normalized prisoner’s dilemma payoffs

R S

T P

. Excluding

player i, there are N−1 players and, among those, m cooperate. Accordingly, player

i’s stage-game payoff from cooperating is

π(C,m;N − 1) =
m

N − 1
R +

N −m− 1

N − 1
S

and the payoff when defecting reads

π(D,m;N − 1) =
m

N − 1
T +

N −m− 1

N − 1
P.

Players face strategic uncertainty. Let p be the (identical) probability that any of

i’s opponents play a grim trigger (GT) strategy, and (1− p) is the probability that

a player ̸= i plays always defect (AD).

First, suppose that player i plays GT. After the initial period (that is, in t = 1),

there are only two contingencies. With probability pN−1, all players cooperated

in t = 0 and thus maintain cooperation throughout the supergame, yielding an

expected payoff of

pN−1

∞∑
t=1

δtR = pN−1 δ

1− δ
R.

With the counter probability, at least one rival player failed to cooperate in t = 0

and therefore everyone defects afterwards:

(
1− pN−1

) ∞∑
t=1

δtP =
(
1− pN−1

) δ

1− δ
P.

In period t = 0, the expected payoff from choosing GT is given by the different

factorial combinations with which i faces m cooperators (where 0 ≤ m ≤ N − 1):

N−1∑
m=0

(
N − 1

m

)
pm(1− p)N−m−1

(
m

N − 1
R +

N −m− 1

N − 1
S

)
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This can be rewritten as

R

N − 1

N−1∑
m=0

(
N − 1

m

)
pm(1− p)N−m−1m︸ ︷︷ ︸

=(N−1)p → the binomial mean

+
N − 1

N − 1︸ ︷︷ ︸
=1

S
N−1∑
m=0

(
N − 1

m

)
pm(1− p)N−m−1

︸ ︷︷ ︸
=1 → the total mass

− S

N − 1

N−1∑
m=0

(
N − 1

m

)
pm(1− p)N−m−1m︸ ︷︷ ︸

=(N−1)p

Hence, the expected payoff from playing GT in t = 0 is pR + (1 − p)S. Summing

up, the discounted payoff from GT is

pR + (1− p)S +
δ

1− δ
pN−1R +

δ

1− δ

(
1− pN−1

)
P

Second, assume player i chooses AD. Regardless of the choices of the other

players, the initial defect action triggers full defection by all players in periods t =

1, ...,∞. Thus,
∞∑
t=1

δtP =
δ

1− δ
P.

In t = 0, the expected payoff from AD is given by

N−1∑
m=0

(
N − 1

m

)
pm(1− p)N−m−1

(
m

N − 1
T +

N −m− 1

N − 1
P

)

We can rewrite this (as above for GT) and obtain an expected payoff of p T+(1−p)P .

Altogether, the discounted payoff from AD is

p T + (1− p)P +
δ

1− δ
P.

Comparing expected payoffs from GT versus AD, we obtain

pR + (1− p)S +
δ

1− δ
pN−1R +

δ

1− δ

(
1− pN−1

)
P ≥ p T + (1− p)P +

δ

1− δ
P

or
δ

1− δ
pN−1(R− P ) ≥ p (T + S −R− P ) + (P − S). (7)

Employing the normalization R = 1, P = 0, T = 1 + g and S = −l, equation (7)

reads
δ

1− δ
pN−1 ≥ p (g − l) + l.

Dividing by pN−1, we obtain (3) in the main text.
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This approach readily extends when the continuous action set is available. Plug-

ging R = σ(1 + (g − l)(1− σ)), T = σ(1 + g), S = −σl and P = 0 (see main text)

into (7), we obtain
δ

1− δ
pN−1 ≥ l + pσ(g − l)

1 + (1− σ) (g − l)
. (8)

One can verify that the partial derivative of the right-hand side with respect to σ

depends on the sign of g − l as claimed in the main text. As in the Pure case,

this equation can be solved explicitly for sizeBAD when g = l, in which case σ has

no effect. We finally derive the continuous-action-set version of δ∗. Substituting

p = 1/2 in (8) and rearranging yields

δ ≥ 2l + σ(g − l)

2l + σ(g − l) +
(
1
2

)N−2
(1 + (g − l)(1− σ))

.

Once again, plugging in σ = 1 yields the result of the pure-strategy setup.

B Power calculations

Our power calculations regarding N were based on the oligopoly experiments meta

data by Engel (2015). Using the normalized averages and standard deviations from

data reported in the working paper version of the paper (Engel, 2006, Table 10), we

simulated three times 21 random observations in three clusters for 2, 3, 4, 6, and 8

firms (nine were unavailable, and there was only one observation for ten firms). We

then regressed the cooperation variable on the number of players, clustering at the

session level. In 1,000 runs, the probability of detecting a significant effect of group

size was greater than 96.9%, assuming a p-value of 0.05.

For the power calculations of the effect of the Defensive and Offensive payoff ma-

trices, we used the N = 2 prisoner’s dilemma meta dataset in Dal Bó and Fréchette

(2018). Our Neutral and Defensive/Offensive games have δ∗ = 0.667 and δ∗ = 0.75,

respectively (see equation (5)); or δ − δ∗ = 0.248 and δ − δ∗ = 0.332. To estimate

the expected effect size, we referred to Dal Bó and Fréchette (2018)’s data, identi-

fying 13 supergames where δ− δ∗ = 0.233 and 34 supergames where δ− δ∗ = 0.355,

which closely correspond to our game parameters. In these subsets of their data,

the average cooperation rate was 76.75 (SD 11.03) for Neutral and 54.24 (SD 16.57)

for Offensive/Defensive. This observed difference of 22.51 units served as the target
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effect size for our power simulation. Running 1,000 linear regressions with 7 ran-

domly generated observations times three clusters each, the probability of correctly

detecting a significant effect of a dummy variable for Defensive/Offensive matrix on

cooperation, clustered at the session level and given p = 0.05 was 75.2%.
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Figure 10. Evolution of group cooperation rates over supergames, by session.
Different plot markers indicate the matrix that was played in each supergame.
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Figure 11. Evolution of group cooperation rates over supergames in the Cont
experiment, by session. Different plot markers indicate the matrix that was played
in each supergame.
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Additional Tables

Table 3. Alternative minimum discount factor δ∗ and SizeBAD

sizeBAD δ∗

Neutral Offensive Defensive Neutral Offensive Defensive

N = 2 0.00170 0.00171 0.00340 0.66667 0.75000 0.75000
N = 3 0.04127 0.04213 0.05751 0.80000 0.85714 0.85714
N = 4 0.11942 0.12417 0.14668 0.88889 0.92308 0.92308
N = 6 0.27941 0.29420 0.31031 0.96970 0.97959 0.97959
N = 9 0.45071 0.47307 0.47512 0.99611 0.99740 0.99740

1 SizeBAD as in (3) given the discount factor used in the experiment (0.9983̄), and δ∗

as in (5) given p = 1/2, both as a function of N and the game matrix.

Table 4. Descriptive statistics of the control variables

Mean Median Std. Dev. Min Max Obs.

Demographics
Age / yr 24.6 23 6.8 18 60 71
Female (d.) 0.528 - - 0 1 72
Lab experience (cat.) 1.99 2 0.81 1 3 72
Bachelor (d) 0.708 - - 0 1 72
Master (d.) 0.236 - - 0 1 72
Economics & Business (d.) 0.389 - - 0 1 72
Science & Medicine (d.) 0.347 - - 0 1 72
Arts, Humanities & Law (d.) 0.167 - - 0 1 72
Not studying or incomplete (d.) 0.097 - - 0 1 72

Preference survey
Risk taking (qual.) 4.85 5 1.96 1 8 72
Risk taking (quan.) 4.63 5 1.55 2 8 71
Time discounting (qual.) 6.40 7 2.20 0 10 72
Time discounting (quan.) 5.10 5 2.78 1 11 72
Trust (qual.) 4.60 4 2.76 0 10 72
Trust (quan.) 9.50 10 5.94 0 20 71
Altruism (qual.) 5.76 6 2.36 1 10 72
Altruism (quan.) 120.42 50 140.30 0 500 71
Positive reciprocity (quan.1) 15.88 15 7.21 0 32 70
Positive reciprocity (quan.2) 18.26 20 6.98 5 30 72
Negative reciprocity (qual.) 5.42 6 2.35 0 10 72
Negative reciprocity (quan.) 42.46 50 12.07 10 70 71

1 See the main text for a discussion of the control variables and the questionnaire employed in the
preference survey (based on Falk et al. 2016, 2018).
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Table 5. Regression analyses of initial cooperation choices, bootstrapped standard
errors, clustered at the session level

Initial cooperation rate, ci,s at t = 0

(1) (2) (3)

Group size, Ni, s =0.040*** (0.007) =0.031*** (0.002) =0.034*** (0.003)
Defensive (d.) =0.112*** (0.022) =0.182*** (0.028) =0.169*** (0.023)
Offensive (d.) =0.176*** (0.027) =0.311*** (0.049) =0.275*** (0.048)
Supergame 0.003 (0.004) 0.021*** (0.006) 0.020*** (0.005)

Cont (d.) =0.341*** (0.040) =0.190*** (0.059) =0.165 (0.137)
Group size, Ni, s × Cont (d.) 0.035*** (0.007) 0.030*** (0.005) 0.031*** (0.009)
Defensive (d.) × Cont (d.) 0.140*** (0.027) 0.195*** (0.049) 0.172** (0.071)
Offensive (d.) × Cont (d.) 0.171*** (0.028) 0.173*** (0.063) 0.112 (0.069)
Supergame × Cont (d.) =0.005 (0.004) =0.017*** (0.006) =0.015* (0.008)

Defensive (d.) × Group size, Ni, s 0.016** (0.007) 0.016*** (0.004)
Offensive (d.) × Group size, Ni, s 0.027*** (0.004) 0.024*** (0.003)
Supergame × Group size, Ni, s =0.003*** (0.001) =0.002*** (0.001)

Defensive (d.) × Group size, Ni, s × Cont (d.) =0.020** (0.008) =0.018*** (0.007)
Offensive (d.) × Group size, Ni, s × Cont (d.) =0.013** (0.005) =0.007 (0.005)
Supergame × Group size, Ni, s × Cont (d.) 0.002 (0.001) 0.001 (0.001)

Previous supergame:

Group smaller previsous game 0.003 (0.011)
Defensive previous game 0.017 (0.032)
Offensive previous game 0.017 (0.024)
Length, Ts / 60 s previous game 0.031** (0.014)

Demographics:
Age =0.002* (0.001)
Female (d.) =0.055*** (0.012)
Lab experience (cat.) =0.008 (0.014)
Bachelor (d.) =0.098 (0.068)
Master (d.) =0.134** (0.055)
Economics & Business (d.) =0.020 (0.044)
Science & Medicine (d.) =0.038 (0.058)
Arts, Humanities & Law (d.) =0.067* (0.036)

Preference survey:

Risk taking =0.031** (0.013)
Time discounting 0.007 (0.014)
Trust 0.032*** (0.012)
Altruism 0.029 (0.019)
Positive reciprocity =0.010 (0.023)
Negative reciprocity =0.000 (0.011)

Constant 0.745*** (0.038) 0.446*** (0.016) 0.642*** (0.054)

Observations 2982 2982 2600
Adjusted R2 0.047 0.148 0.195

1 Linear regressions with standard errors clustered at the session level, including subject fixed effects. One unit of observation is
the initial choice of subject i, at the beginning of supergame s.
2 Defaults: defensive and offensive games are compared to neutral games. Level and field of studies are compared to a baseline
group declaring not to study or not specifying the level and field of the studies.

41



Experimental Instructions

Welcome to our experiment!

Please read these instructions carefully. I need to say one thing before we start:
Please do not talk to other participants once the experiment has started. The use of
mobile phones or similar devices is also not permitted during the entire experiment.
If you have any questions after reading these instructions, please raise your hand
and we will come to your cubicle and answer your questions personally.

The experiment will be conducted anonymously, that means, you will not find
out who among the other participants has interacted with you. It also means that
we will not save any data in connection with your name. Depending on your choices
and those of other players, you can earn real money today.

Basic idea

In each of several rounds, you will be randomly matched in a group with one or
more other persons (your counterparts) in this room. You are informed about how
many other people are playing with you each period. This will be indicated above
your selector device.

You can choose between “A” and “B” by clicking the corresponding button. In the
same way, your counterparts will also choose between “A” and “B”.

Your earning possibilities are represented with a payoff matrix like the one above.
In each of the four cells in the matrix there are two numbers. The numbers in the
first position, shown in blue, give your earnings from the combination of actions.
The numbers in the second position, shown in black, would be your counterpart’s
earnings, if there was only one other person in your group.

Your earnings depend on the combination of your choice and the choices of the
other people in your group. Your choice determines whether row “A” or “B” is
selected, marked by the gray shadow. The choices of your counterparts determine
the impact of the two columns on your earnings.

Example. First imagine that you are matched in a group where only 1 other
player is in your group. If you chose “A” and your counterpart chose “A” you
would earn 10 as would the other person in your group. If instead the other person
in your group chose “B”, you would earn 2 and the other person in your group would
earn 14.
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Now imagine that you are matched in a group with an additional 2 other play-
ers. You chose “A”. If both of the other people chose “A”, you would earn 10, and
if instead both of them chose “B”, you would earn 2. If one of them chose “A” and
the other one chose “B”, you would then earn the following:

0.5× 10 + 0.5× 2 = 5 + 1 = 6.

In general, your earnings are determined by your selection of the row “A” or B”,
and by the fraction (or percentage) of the other people in your group that selects
each column “A” or ‘B”.

The payoff matrix is not always the same in each round. There are three different
game matrices in today’s experiment and one of them will be selected randomly for
each round. You should always look at it carefully at the beginning of each round.

The next screenshot shows you an example with different earning levels (red
graph) depending on your choices (blue line) and the choice of your counterparts
(black line) over time. We explain how to interpret the computer display below as
well.

Rounds and groups

There will be 21 rounds. At the beginning of each round the computer matches
you randomly with other players in the room into one group. Your group includes
you and the other people in your group. The total number of persons in one group
(including you) can be 2, 3, 4, 6 or 9.

As shown in the screenshot, we inform you of how many “other players are in
your group.” This number will then be 1, 2, 3, 5 or 8.

Before starting a new round, you are randomly rematched in a new group with
different people. We ensure you that today you will not be matched in the same
exact group of persons more than once.

The number of other persons in your group is not always the same as in the
previous round. You should always look at it carefully at the beginning of each
round.

Your initial choice

Before each round begins, you have 30 seconds (half a minute) to decide whether
you want to select “A” or “B” to begin the round of play. The following message at
the top-left part of your display will indicate that you should now make your initial
choice for the next round that is about to start.

This period of 30 seconds starts with your selector in a random position, either
“A” or “B”. This random choice to initialize the software has no particular meaning
and you can change your initial choice as many times as you want during these
30 seconds. The only choice that matters is what is marked at the end of the 30
seconds.

43



Duration of each round

Each round will have a different duration. The clock at the top-left part of your
display indicates how much time (in seconds) has elapsed in that round. In practice
you will see time flowing in very fast ticks of one-tenth of a second each (0.1 s). You
can think of it as if in each of these tenth-of-a-second intervals, there is a probability
of 599 in 600 (99.83 percent) that the next tenth of a second will get to be played.

The specific duration of each round is not known in advance by you or by any
other participants. We use a random draw by the computer to determine the exact
length of each round.

The average duration of all rounds in this experiment is around 60 seconds (one
minute). But you should assume considerable defections. Some rounds may be
much shorter and some rounds may be much longer. There is no upper limit for
the maximum duration and the experiment will last as long as determined by the
random draw. We will not intervene during the duration of the experiment.

The table below illustrates an example. It shows the different lengths of 21
rounds, which are obtained from the same random computer draws that we use for
your experiment today. Be aware that the length of the 21 rounds that you play
today are not related to the ones in the example, but you can expect a similar
pattern.

Round Duration Round Duration Round Duration

1 7.9 s 8 44.1 s 15 32.3 s
2 39.0 s 9 84.3 s 16 79.9 s
3 147.0 s 10 16.5 s 17 5.0 s
4 58.4 s 11 0.9 s 18 51.5 s
5 267.2 s 12 91.7 s 19 0.8 s
6 4.5 s 13 46.7 s 20 31.9 s
7 36.6 s 14 7.3 s 21 149.5 s

During the time of play of each round, you can change your action at any time by
clicking the radio buttons “A” or “B” in the selector device or by using the up and
down arrow keys (↑ ↓) on your keyboard. You and all the other players in your group
may change your actions as often as you like.

The end of each round will be announced in the space at the top-left occupied
by the usual clock. At the end you will see that your selector device is frozen for
about 10 seconds. After this small pause, you will move on automatically to the
next round, starting with the 30 seconds to select your next initial choice.

Computer display

You can think of your computer display as divided into two parts. On the left, you
will always have the selection between “A” and “B” with the payoff matrix. Above
the matrix, you will see the information on how many other players make up your
group.

At the very top, you will find the clock displaying the time that has elapsed in
the current round and a counter with the earnings that you have accumulated so
far in the current round.

The messages indicating that a round is over or that you are now in the 30-second
period to select your initial action will also appear here.
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The right side of your screen displays the relevant information and the state of
play in real time. You can see two charts. Both of them share the same horizontal
axis: the time, moving toward the right.

Since the duration of a round is not known in advance, the length of your display
is fixed to 60 seconds. When a round is shorter, the lines will stop at an intermediate
point in the chart. If a round is longer, the charts will keep the current point fixed
in your display and show the more recent 60 seconds. Older information will be
replaced by the new one. You will have time to familiarize yourself with this display
during the practice rounds.

There are two lines in the above chart. The blue line shows your own choice
(“A” or “B”) over the elapsed time. The black line shows the choices of actions
made by the other players in your group (your co-players). It represents the fraction
(or percentage) of them that is currently choosing “A”. For example, if there are 4
other players in your group and you see that 25% of them (1 in 4) are choosing “A”,
then you also know that the other 3 are choosing “B”.

You start each round with initial earnings of 0 and accumulate earnings over the
course of the round depending on your choice and on the choice of the other players
in your group as explained. The red line in the bigger chart shows how much you
are earning over the course of the round. The higher the position of the red line the
more you are currently earning. The cumulated earnings indicated in the counter
correspond to the area below your read earnings line.

Earnings

In this experiment, you accumulate earnings over time in each round, and we take
the expected average duration of the rounds of 60 seconds as a reference for scaling
your earnings.
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Example. We discuss now the details of the specific case that you can see in the big
screenshot. In this example, there are 2 other players in your group.

First, you can see that the top-left part of the display indicates that play (so
far) has lasted 58.5 seconds, and that the cumulated earnings for you would be 7.59
EUR.

The computer will compute your earnings in detail for you, but you can see here
the rules of how earnings are calculated.

Looking at the right part of the display, the three lines charted (your actions in
blue, the actions of the other players in your group in black, and your earnings in
red) identify a sequence of six different configurations that last around 10 seconds
each.

In this round (blue), your behavior would have been to choose row “A” for about
40.5 seconds with no changes, followed by a shorter period of 8.5 seconds where you
would have chosen row “B”, and finally a last period of another 10 seconds selecting
“A” again.

The black line shows that during the first 10 seconds of play, one of the other
players chose “A” and the other chose “B”. This was followed by another 10 seconds
where both other players chose “B”, then 10.5 seconds where they split again with
one choosing “A” and one choosing “B”, and finally almost 30 seconds where both
chose “A”.

As a result of your choices made over time, combined with the actions chosen
by the other players in your group, and considering the duration of these different
outcomes, the sequence of earnings are:

� 0.5× 10 + 0.5× 2 = 6 EUR over 10 seconds
� 1.0× 2 = 2 EUR over 10 seconds
� 0.5× 10 + 0.5× 2 = 6 EUR over 10.5 seconds
� 1.0× 10 = 10 EUR over 10 seconds
� 1.0× 14 = 14 EUR over 8.5 seconds
� 1.0× 10 = 10 EUR over 10 seconds

Altogether, given the scale of 60 seconds of expected average duration, we have

1

60 s
×
(
6×10 s+2×10 s+6×10.5 s+10×10 s+14×8.5 s+10×10 s

)
≈ 7.59 EUR.

You will not have to do these computations yourself while playing, the computer
will do them for you. Since we scale your payoff by 60 seconds, you should expect
that the longer rounds will allow you to accumulate more earnings than shorter
rounds.

Practice rounds

Before the real experiment begins, you will get two training rounds to familiarize
yourself with the computer. These practice rounds will not be paid.

The first training round lasts 20 seconds. In this round, the software will be
initialized and you can use it to become familiar with the computer display. You
can identify the charts where the relevant information will be shown: the number of
other participants in your group, your own choices, the choices of the other players
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in your group, and your earnings. This first round will contain no information about
the payoff matrix.

The second round lasts 80 seconds and you can use it to explore how to choose
actions by clicking the radio buttons of the selector with the mouse or by using the
up and down arrow keys in your keyboard. This will also give you a chance to see
how the graphs in the display change with time, and how the window shows you all
relevant information for the last minute of play.

In the 30-second interval, you can also experiment with what initial action you
plan to select before the round begins. The payoff matrix in this second practice
round will contain random numbers that are not related to the rest of the experiment.

Final payout

The session ends after the two training rounds and the 21 rounds are played. At the
end of the session each of you will be paid in EUR the average number of points,
that is, the average across the 21 rounds that you played.

After the last round of play finishes, please remain seated at your desk until we
call you. Before making the final payments we will ask you to fill in a questionnaire
that will help us better understand the data from the experiment. This questionnaire
will be anonymous and we will not save any data in connection with your name.
You can find your participant number next to your computer.

Summary

� You will play 21 rounds of random duration with no limit on their maximum
length.

� You play these rounds matched with other players in this room. These groups
are randomized for each round and vary also in the size (number of players).

� You have 30 seconds to choose your initial action and you can change your
action (“A” or “B”) at any time during the round and as often as you like.

� Your cumulated earnings depend on your “A”/“B” choices, the “A”/“B”
choices made by the other persons in your group and the duration of the
game.

� At the end of the session you will be paid in cash the average earnings that
you made over the 21 rounds.

Cont experiment (basic setup only)

You can choose between “A” and “B” and, in doing so with the blue slider, you can
also select all intermediate levels. If your slider is completely at the top, then you
are choosing 100% “A” and 0 percent “B”. Conversely, if your slider is completely
at the bottom, then you are choosing 0 percent “A” and 100% “B”. As already
mentioned, all intermediate positions are possible (60% “A” and 40% “B”; 18% “A”
and 82% “B”; etc.)

The other persons in your group choose in the same way as you, with their sliders
between “A” and “B”. The black vertical line shows you the average percentage of
choice “A” (and “B”) by the other persons in your group.
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In the example of the above screenshot, you choose 75% “A” and 25% “B”. The
average choice by the other players in your group is 25% “A” and the corresponding
75% “B”. For instance, this average can be the result of one player selecting zero
percent “A” and the other selecting 50% “B”.

Your earning possibilities are represented with a payoff matrix like the one above.
The numbers in the four corners represent your earning possibilities in the cases in
which either 100% “A” or 100% “B” is played. In each of the four corners of the
gray square, there are two numbers. The numbers in the first position, shown in
blue, give your earnings. The numbers in the second position, shown in black, would
be your counterpart’s earnings, if there was only one other person in your group.

Your earnings depend on the combination of your choice and the choice of the
other people in your group. Your choice determines whether the percentage of “A”
and “B” that you play (blue slider). The average choice of the other persons in your
group determines the average percentage of actions “A” and “B” that you confront
(black slider).

Experimental Instructions (German original)

Willkommen zu unserem Experiment!

Bitte lesen Sie diese Anweisungen sorgfältig durch. Eine Sache vorweg: Bitte
sprechen Sie nicht mit anderen Teilnehmern nachdem das Experiment begonnen
hat. Die Benutzung von Mobiltelefonen oder ähnlichen Geräten ist während des
gesamten Experiments ebenfalls nicht gestattet. Wenn Sie nach dem Lesen dieser
Anleitung Fragen haben, heben Sie bitte Ihre Hand und wir werden in Ihre Kabine
kommen und Ihre Fragen persönlich beantworten.

Das Experiment wird anonym durchgeführt, d. h. Sie erfahren nicht, wer unter
den anderen Teilnehmerinnen und Teilnehmern mit Ihnen interagiert. Dies bedeutet
auch, dass wir keine Daten in Verbindung mit Ihrem Namen speichern.

In Abhängigkeit von Ihren Entscheidungen und denen anderer Teilnehmerinnen
und Teilnehmern können Sie heute echtes Geld verdienen.

Die Grundidee

In jeder Runde werden Sie zufällig in einer Gruppe mit einer oder mehreren anderen
Personen (Ihren Mitspielern) in diesem Raum zusammengeführt. Sie werden darüber
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informiert, wie viele andere Personen in jeder Periode mit Ihnen spielen werden; dies
wird über Ihrer Auszahlungsmatrix angegeben.

Sie können zwischen “A” und “B” wählen, indem Sie auf die entsprechende
Schaltfläche klicken. In gleicher Weise wählen auch die anderen Personen in Ihrer
Gruppe zwischen “A” und “B”.

Ihre Verdienstmöglichkeiten werden durch eine Auszahlungsmatrix wie oben
dargestellt. In jeder der vier Zellen in der Matrix gibt es zwei Zahlen. Die Zahlen
in der ersten Position, die in blau angezeigt werden, geben die Ihre Einnahmen an.
Die Zahlen in der zweiten Position, die in Schwarz angezeigt werden, sind die Ein-
nahmen einer anderen Person in Ihrer Gruppe falls nur eine andere Person in Ihrer
Gruppe ist.

Ihre Auszahlungen hängen von der Kombination Ihrer Entscheidungen und derer
der anderen Personen in Ihrer Gruppe ab. Ihre Entscheidung legt fest, ob die Zeile
“A” oder “B” ausgewählt ist, die durch den grauen Schatten markiert ist. Die
Entscheidungen der anderen Personen in Ihrer Gruppe bestimmt den Einfluss der
beiden Spalten auf Ihre Auszahlung.

Beispiel. Stellen Sie sich zunächst vor, Sie gehören zu einer Gruppe, in der nur 1
anderer Spieler in Ihrer Gruppe ist. Wenn Sie “A” wählen und die andere Person
in Ihrer Gruppe “A” wählt, würden Sie 10 und die andere Person in Ihrer Gruppe
ebenfalls 10 verdienen. Wenn die andere Person in Ihrer Gruppe “B” wählt, würden
Sie 2 und die andere Person in Ihrer Gruppe 14 verdienen.

Stellen Sie sich nun vor, Sie befinden sich in einer Gruppe, in der 2 andere
Spieler in Ihrer Gruppe sind. Sie haben “A” gewählt. Wenn die beiden anderen
Personen in Ihrer Gruppe “A” wählen, verdienen Sie 10, und wenn die beiden an-
deren Personen in Ihrer Gruppe stattdessen “B” wählen, verdienen Sie 2. Wenn
einer der beiden anderen in Ihrer Gruppe “A” und der andere “B” wählt. dann
würden Sie Folgendes verdienen

0, 5× 10 + 0, 5× 2 = 5 + 1 = 6.

Generell werden Ihre Auszahlungen durch die Auswahl der Zeile “A” oder “B”
und durch den Bruchteil (oder Prozentsatz) der anderen Personen in Ihrer Gruppe
bestimmt, die die Spalten “A” oder “B” auswählen.

Die Auszahlungsmatrix ist nicht in jeder Runde immer gleich. Im heutigen
Experiment gibt es drei verschiedene Auszahlungsmatrizen, von denen eine zufällig
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für jede Runde ausgewählt wird. Sie sollten es zu Beginn jeder Runde immer genau
betrachten.

Der nächste Screenshot zeigt Ihnen ein Beispiel mit unterschiedlichen Verdien-
ststufen (rote Grafik), abhängig von Ihren Auswahlmöglichkeiten (blaue Linie) und
der Wahl Ihrer Gegenstücke (schwarze Linie) im Zeitverlauf. Im Folgenden wird
auch erklärt, wie der Computerbildschirm interpretiert werden soll.

Runden und Gruppen

Es wird 21 Runden geben. Zu Beginn jeder Runde bringt der Computer Sie zufällig
mit anderen Spielern im Raum in einer Gruppe zusammen. Ihre Gruppe umfasst
Sie und anderen Personen in Ihrer Gruppe. Die Gesamtzahl der Personen in einer
Gruppe (einschließlich Ihnen) kann 2, 3, 4, 6 oder 9 sein.

Wie im vorherigen Screenshot gezeigt, informieren wir Sie, wie viele “andere
Spieler in Ihrer Gruppe” sind. Diese Nummer lautet dann 1, 2, 3, 5 oder 8.

Bevor wir eine neue Runde beginnen, werden Sie in einer neuen Gruppe mit
verschiedenen Personen zufällig zusammen gebracht. Wir stellen sicher, dass Sie
heute nicht mehr als einmal in derselben Gruppe zusammenkommen.

Die Anzahl der anderen Personen in Ihrer Gruppe ändert sich jeder Runde. Sie
sollten diese Zahl zu Beginn jeder Runde stets genau beachten.

Ihre Anfangsentscheidung

Bevor eine Runde beginnt, haben Sie 30 Sekunden (eine halbe Minute) Zeit, um
zu entscheiden, ob Sie “A” oder “B” zu Beginn der Runde wählen möchten. Die
folgende Nachricht oben links im Display zeigt an, dass Sie jetzt die Anfangsentschei-
dung für die nächste Runde treffen müssen, die gerade beginnt.

Diese Zeitspanne von 30 Sekunden beginnt damit, dass zufällig “A” oder ”B”
ausgewählt sind. Diese zufällige Vorauswahl dient allein dem Initialisieren der Soft-
ware und hat keinerlei Bedeutung. Sie können Ihre Wahl für Ihre Anfangsentschei-
dung während dieser 30 Sekunden beliebig oft ändern. Ihre Anfangsentscheidung
ist einfach die, die Sie am Ende der 30 Sekunden einstellen.

Die Dauer der Runden

Jede Runde hat eine andere Dauer. Die Uhr oben links im Display zeigt an, wie viel
Zeit (in Sekunden) in dieser Runde vergangen ist. In der Praxis wird die Zeit in sehr
schnellen Intervallen von jeweils einer Zehntelsekunde (0,1 s) fließen. Sie können sich
vorstellen, dass in jedem dieser Zehntelsekunden-Intervalle eine Wahrscheinlichkeit
von 599 zu 600 (99,83 Prozent) besteht, dass eine weitere Zehntelsekunde weiter
gespielt wird.

Die genaue Dauer jeder Runde ist weder Ihnen noch den anderen Teilnehmerin-
nen und Teilnehmern im Voraus bekannt. Wir nutzen einen zufälligen Computerzug,
um die genaue Länge jeder Runde zu bestimmen.

50



Die durchschnittliche Dauer aller Runden in diesem Experiment beträgt etwa 60
Sekunden (eine Minute). Sie sollten aber von erheblichen Abweichungen von diesem
Durchschnitt ausgehen. Die Runden können viel kürzer und auch viel länger sein.
Es gibt keine Obergrenze für die maximale Dauer und das Experiment dauert so
lange, wie es durch die Zufallsziehung bestimmt wird. Wir werden während der
Dauer des Experiments nicht eingreifen.

Die folgende Tabelle zeigt Ihnen ein Beispiel. Sie zeigt Ihnen die unterschiedlichen
Längen von 21 Runden, die mit dem gleichen zufälligen Computerzug gemacht wur-
den, den wir heute für Ihr Experiment verwenden. Beachten Sie, dass die Länge
der 21 Runden, die Sie heute spielen, nicht mit denen in diesem Beispiel zusam-
menhängen, aber Sie können ein ähnliches Muster erwarten.

Runde Dauer Runde Dauer Runde Dauer

1 7,9 s 8 44,1 s 15 32,3 s
2 39,0 s 9 84,3 s 16 79,9 s
3 147,0 s 10 16,5 s 17 5,0 s
4 58,4 s 11 0,9 s 18 51,5 s
5 267,2 s 12 91,7 s 19 0,8 s
6 4,5 s 13 46,7 s 20 31,9 s
7 36,6 s 14 7,3 s 21 149,5 s

Während der Spielzeit können Sie Ihre Aktion jederzeit ändern und zwar indem
Sie auf die Schaltflächen “A” und “B” klicken oder die Aufwärts- und Abwärtspfeil-
tasten (↑ ↓) auf Ihrer Tastatur verwenden. Sie und alle anderen Personen in Ihrer
Gruppe können Ihre Aktionen beliebig oft ändern.

Das Ende jeder Runde wird in dem Feld oben links bekannt gegeben; dort, wo
sich die Uhr befindet. Am Ende werden Sie sehen, dass Ihre Auswahlschaltfläche
für ungefähr 10 Sekunden eingefroren ist. Nach dieser kurzen Pause gehet es au-
tomatisch in die nächste Runde, und wir beginnen wieder mit den 30 Sekunden, in
denen Sie Ihre Anfangswahl treffen.

Computerdisplay

Sie können sich Ihr Computerdisplay als zweigeteilt vorstellen. Auf der linken Seite
haben Sie immer die Auswahl zwischen “A” und “B” mit der Auszahlungsmatrix.
Über der Matrix sehen Sie die Information, wie viele andere Spieler mit Ihnen in
einer Gruppe sind.

Ganz oben finden Sie die Uhr mit der verstrichenen Zeit der aktuellen Runde und
einen Zähler mit dem Verdienst, den Sie bisher in der aktuellen Runde gesammelt
haben.

Hier werden auch die Meldungen angezeigt, die darauf hinweisen, dass eine
Runde beendet ist oder dass Sie sich jetzt im 30-Sekunden-Zeitraum befinden, um
Ihre Anfangswahl zu treffen.

Auf der rechten Seite Ihres Bildschirms werden die relevanten Informationen und
der Status des Spiels in Echtzeit angezeigt. Sie sehen zwei Diagramme. Beide haben
dieselbe horizontale Achse: die Zeit, die sich nach rechts bewegt.

Da die Dauer einer Runde nicht im Voraus bekannt ist, ist die Dauer in Ihrer
Anzeige zunächst auf 60 Sekunden festgelegt. Wenn eine Runde kürzer als 60 Sekun-
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den ist, werden die Linien an einem Zwischenpunkt im Diagramm angehalten. Wenn
eine Runde länger ist, wird der aktuelle Punkt in den Diagrammen festgehalten
und die letzten 60 Sekunden der Charts angezeigt. Ältere Informationen werden
durch die neuen ersetzt. Sie haben Zeit, sich während der Übungsrunden mit dieser
Anzeige vertraut zu machen.

Es gibt zwei Zeilen in der oberen Tabelle. Die blaue Linie zeigt Ihre Wahl (“A”
oder “B”) über die verstrichene Zeit. Die schwarze Linie zeigt die Auswahl der
Aktionen, die von den anderen Spielern in Ihrer Gruppe (Ihren Kollegen) getroffen
werden. Es stellt den Bruchteil (oder Prozentsatz) von ihnen dar, der aktuell “A”
wählt. Wenn sich zum Beispiel 4 andere Spieler in Ihrer Gruppe befinden und Sie
sehen, dass 25% (1 von 4) “A” wählen, wissen Sie auch, dass die anderen 3 “B”
wählen.

Sie beginnen jede Runde mit einem ersten Verdienst von 0 und kumulieren
im Laufe der Runde Ihren Verdienst, abhängig von Ihrer Entscheidung und der
Entscheidungen der anderen Personen in Ihrer Gruppe, wie bereits erläutert. Die
rote Linie in der größeren Grafik zeigt, wie viel Sie im Verlauf der Runde verdi-
enen. Je höher die Position der roten Linie, desto mehr verdienen Sie aktuell. Die
kumulierten Einnahmen im Zähler entsprechen dem Bereich unterhalb Ihrer roten
Einnahmen-Linie.

Verdienst

In diesem Experiment sammeln Sie in jeder Runde Einnahmen über die Zeit,
und wir nehmen die erwartete durchschnittliche Dauer der Runden von 60 Sekunden
als Referenz für die Skalierung Ihrer Einnahmen.
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Beispiel. Wir besprechen jetzt die Details des konkreten Falls, den Sie im großen
Screenshot sehen können. In diesem Beispiel gibt es zwei weitere Spieler in Ihrer
Gruppe.

Erstens können Sie sehen, dass der obere linke Teil der Anzeige anzeigt, dass das
Spiel (bisher) 58,5 Sekunden gedauert hat und dass der kumulierte Gewinn für Sie
7,59 EUR betragen würde.

Der Computer wird für Sie den Verdienst in Detail berechnen, aber hier sind die
Regeln, nach denen der Verdienst berechnet wird:

Wenn Sie den rechten Teil des Bildschirms betrachten, zeigen die drei Linien (Ihre
Aktionen in Blau, die Aktionen der anderen Spieler in Ihrer Gruppe in Schwarz und
Ihre Einnahmen in Rot) eine Sequenz von sechs verschiedenen Möglichkeiten, die
jeweils etwa 10 Sekunden dauern.

Ihr Verhalten in dieser Runde (blau) wäre gewesen, “A” für ungefähr 40,5 Sekun-
den ohne Änderungen zu wählen, gefolgt von einem kürzeren Zeitraum von 8,5
Sekunden, in dem Sie “B” gewählt hätten, und schließlich eine letzte Zeitspanne
von weiteren 10 Sekunden, wobei erneut “A” gewählt wird.

Die schwarze Linie zeigt, dass einer der anderen Teilnehmer in den ersten 10
Sekunden “A” und der andere “B” gewählt hat. Es folgten weitere 10 Sekunden, in
denen beide ”B” wählten, dann 10,5 Sekunden, in denen erneut einer “A” und einer
“B” gewählt hatte, und schließlich fast 30 Sekunden, in denen beide “A” wählten.

Aufgrund Ihrer im Laufe der Zeit getroffenen Entscheidungen, kombiniert mit
den von den anderen Spielern in Ihrer Gruppe gewählten Aktionen, und unter
Berücksichtigung der Dauer dieser unterschiedlichen Ergebnisse sind die Verdien-
stsequenzen folgende:

� 0, 5× 10 + 0, 5× 2 = 6 EUR für 10 Sekunden

� 1, 0× 2 = 2 EUR für 10 Sekunden

� 0, 5× 10 + 0, 5× 2 = 6 EUR für 10,5 Sekunden

� 1, 0× 10 = 10 EUR für 10 Sekunden

� 1, 0× 14 = 14 EUR für 8,5 Sekunden

� 1, 0× 10 = 10 EUR für 10 Sekunden

Insgesamt haben wir angesichts von 60 Sekunden erwarteter durchschnittlicher
Dauer:

1

60 s
×
(
6×10 s+2×10 s+6×10, 5 s+10×10 s+14×8, 5 s+10×10 s

)
≈ 7, 59 EUR.

Sie müssen diese Berechnungen während des Spiels nicht selbst durchführen, der
Computer führt sie für Sie aus.

Da wir Ihre Einnahmen um 60 Sekunden skalieren, sollten Sie damit rechnen,
dass Sie bei längeren Runden mehr Einnahmen erzielen können als kürzere Runden.

Trainingsrunden
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Bevor das eigentliche Experiment beginnt, werden Sie zwei Trainingsrunden spielen,
um sich mit dem Computer vertraut zu machen. Diese Übungsrunden werden nicht
bezahlt.

Die erste Trainingsrunde dauert 20 Sekunden. In dieser Runde wird die Soft-
ware initialisiert und Sie sollten die Zeit nutzen, um sich mit der Computeranzeige
vertraut zu machen. Sie werden die Diagramme mit den relevanten Informationen
sehen: Anzahl der anderen Teilnehmer in Ihrer Gruppe, Ihre eigene Auswahl, die
Auswahl der anderen Spieler in Ihrer Gruppe und Ihre Einnahmen. Diese erste
Runde enthält keine Informationen zur Auszahlungsmatrix.

Die zweite Runde dauert 80 Sekunden. In dieser Runde können Sie sehen, wie
Sie Ihre Aktionen auswählen können; nämlich indem Sie mit der Maus auf die Op-
tionsfelder der Auswahl klicken oder die Pfeiltasten nach oben und nach unten auf
Ihrer Tastatur verwenden. Auf diese Weise können Sie auch sehen, wie sich die
Grafiken in der Anzeige mit der Zeit ändern und wie das Fenster Ihnen alle relevan-
ten Informationen für die letzte Spielminute anzeigt.

Sie können zudem in dem 30-Sekunden-Intervall experimentieren, wie Sie Ihre
Anfangswahl vor Beginn der Runde auswählen. Die Auszahlungsmatrix dieser zweiten
Übungsrunde enthält Zufallszahlen, die sich nicht auf den Rest des Experiments
beziehen.

Auszahlung

Die Sitzung endet nachdem die zwei Trainingsrunden und die 21 Runden gespielt
wurden. Am Ende der Sitzung erhält jeder von Ihnen die durchschnittliche Punk-
tzahl in EUR ausgezahlt, d. h. den Durchschnitt der 21 Runden, die Sie gespielt
haben.

Bleiben Sie nach dem Ende der letzten Runde bitte so lange an Ihrem Platz, bis
wir Sie anrufen. Bevor Sie Ihre Auszahlung erhalten, bitten wir Sie, einen Frage-
bogen auszufüllen, der uns hilft, die Daten des Experiments besser zu verstehen.
Dieser Fragebogen ist anonym und wir speichern keine Daten in Verbindung mit
Ihrem Namen. Sie finden Ihre Teilnehmernummer neben Ihrem Computer.

Zusammenfassung

� Sie werden 21 Runden mit zufälliger Länge und ohne Begrenzung der maxi-
malen Länge spielen.

� Sie spielen diese Runden mit anderen Personen in diesem Raum. Die Gruppen
werden für jede Runde zufällig zusammengestellt und variieren auch in der
Größe (Anzahl der Personen in Ihrer Gruppe).

� Sie haben zunächst 30 Sekunden Zeit, um Ihre Anfangswahl festzulegen, und
Sie können Ihre Aktion (“A” oder “B”) jederzeit während der Runde und so
oft Sie möchten ändern.

� Ihr Gewinn hängt von Ihren “A”/“B” Entscheidungen, den “A”/“B” Entschei-
dungen der anderen Personen in Ihrer Gruppe und der Dauer des Spiels ab.
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� Am Ende der Sitzung erhalten Sie Ihre Auszahlung (in bar), die sich nach
dem durchschnittlichen Verdienst, den Sie in den 21 Runden erzielt haben,
berechnet.
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